Loading…
An uncertain production-inventory problem with deteriorating items
The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-base...
Saved in:
Published in: | Advances in continuous and discrete models 2022-05, Vol.2022 (1), Article 42 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Advances in continuous and discrete models |
container_volume | 2022 |
creator | Shen, Jiayu Jin, Yueqiang Liu, Bing Lu, Ziqiang Chen, Xin |
description | The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method. |
doi_str_mv | 10.1186/s13662-022-03714-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667956906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667956906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9F87Ca7x1r8goIXPYdsMltTutmaZJX-e1NX0JOHYYbhfd8ZHoQuKbmmtBY3kXIhGCYsF5e0xPUJmjHJKS4Zr07_zOdoEeOWEMIaxiWpZ-h26YvRGwhJO1_sw2BHk9zgsfMf4NMQDsdlu4O--HTprbCQILgh6OT8pnAJ-niBzjq9i7D46XP0en_3snrE6-eHp9VyjQ0XPGEr20bXFKSsgVGtbVk2hljRAi1lKURTdaWWugVtKK2azggLHEhFbVOJyjI-R1dTbn7ofYSY1HYYg88nFRNCZlVDRFaxSWXCEGOATu2D63U4KErUEZeacKmMS33jUnU28ckUs9hvIPxG_-P6AizSbeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667956906</pqid></control><display><type>article</type><title>An uncertain production-inventory problem with deteriorating items</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Shen, Jiayu ; Jin, Yueqiang ; Liu, Bing ; Lu, Ziqiang ; Chen, Xin</creator><creatorcontrib>Shen, Jiayu ; Jin, Yueqiang ; Liu, Bing ; Lu, Ziqiang ; Chen, Xin</creatorcontrib><description>The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.</description><identifier>ISSN: 2731-4235</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 2731-4235</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-022-03714-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Confidence intervals ; Difference and Functional Equations ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Optimal control ; Optimization ; Ordinary Differential Equations ; Partial Differential Equations ; Uncertainty</subject><ispartof>Advances in continuous and discrete models, 2022-05, Vol.2022 (1), Article 42</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</citedby><cites>FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</cites><orcidid>0000-0002-7222-2492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2667956906/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2667956906?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Shen, Jiayu</creatorcontrib><creatorcontrib>Jin, Yueqiang</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Lu, Ziqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><title>An uncertain production-inventory problem with deteriorating items</title><title>Advances in continuous and discrete models</title><addtitle>Adv Cont Discr Mod</addtitle><description>The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.</description><subject>Analysis</subject><subject>Confidence intervals</subject><subject>Difference and Functional Equations</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Uncertainty</subject><issn>2731-4235</issn><issn>1687-1839</issn><issn>2731-4235</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9F87Ca7x1r8goIXPYdsMltTutmaZJX-e1NX0JOHYYbhfd8ZHoQuKbmmtBY3kXIhGCYsF5e0xPUJmjHJKS4Zr07_zOdoEeOWEMIaxiWpZ-h26YvRGwhJO1_sw2BHk9zgsfMf4NMQDsdlu4O--HTprbCQILgh6OT8pnAJ-niBzjq9i7D46XP0en_3snrE6-eHp9VyjQ0XPGEr20bXFKSsgVGtbVk2hljRAi1lKURTdaWWugVtKK2azggLHEhFbVOJyjI-R1dTbn7ofYSY1HYYg88nFRNCZlVDRFaxSWXCEGOATu2D63U4KErUEZeacKmMS33jUnU28ckUs9hvIPxG_-P6AizSbeA</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Shen, Jiayu</creator><creator>Jin, Yueqiang</creator><creator>Liu, Bing</creator><creator>Lu, Ziqiang</creator><creator>Chen, Xin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7222-2492</orcidid></search><sort><creationdate>20220523</creationdate><title>An uncertain production-inventory problem with deteriorating items</title><author>Shen, Jiayu ; Jin, Yueqiang ; Liu, Bing ; Lu, Ziqiang ; Chen, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Confidence intervals</topic><topic>Difference and Functional Equations</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jiayu</creatorcontrib><creatorcontrib>Jin, Yueqiang</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Lu, Ziqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in continuous and discrete models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jiayu</au><au>Jin, Yueqiang</au><au>Liu, Bing</au><au>Lu, Ziqiang</au><au>Chen, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An uncertain production-inventory problem with deteriorating items</atitle><jtitle>Advances in continuous and discrete models</jtitle><stitle>Adv Cont Discr Mod</stitle><date>2022-05-23</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><artnum>42</artnum><issn>2731-4235</issn><issn>1687-1839</issn><eissn>2731-4235</eissn><eissn>1687-1847</eissn><abstract>The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-022-03714-8</doi><orcidid>https://orcid.org/0000-0002-7222-2492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-4235 |
ispartof | Advances in continuous and discrete models, 2022-05, Vol.2022 (1), Article 42 |
issn | 2731-4235 1687-1839 2731-4235 1687-1847 |
language | eng |
recordid | cdi_proquest_journals_2667956906 |
source | Springer Nature - SpringerLink Journals - Fully Open Access; DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Analysis Confidence intervals Difference and Functional Equations Functional Analysis Mathematics Mathematics and Statistics Nonlinear differential equations Optimal control Optimization Ordinary Differential Equations Partial Differential Equations Uncertainty |
title | An uncertain production-inventory problem with deteriorating items |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20uncertain%20production-inventory%20problem%20with%20deteriorating%20items&rft.jtitle=Advances%20in%20continuous%20and%20discrete%20models&rft.au=Shen,%20Jiayu&rft.date=2022-05-23&rft.volume=2022&rft.issue=1&rft.artnum=42&rft.issn=2731-4235&rft.eissn=2731-4235&rft_id=info:doi/10.1186/s13662-022-03714-8&rft_dat=%3Cproquest_cross%3E2667956906%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667956906&rft_id=info:pmid/&rfr_iscdi=true |