Loading…

An uncertain production-inventory problem with deteriorating items

The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-base...

Full description

Saved in:
Bibliographic Details
Published in:Advances in continuous and discrete models 2022-05, Vol.2022 (1), Article 42
Main Authors: Shen, Jiayu, Jin, Yueqiang, Liu, Bing, Lu, Ziqiang, Chen, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23
cites cdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23
container_end_page
container_issue 1
container_start_page
container_title Advances in continuous and discrete models
container_volume 2022
creator Shen, Jiayu
Jin, Yueqiang
Liu, Bing
Lu, Ziqiang
Chen, Xin
description The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.
doi_str_mv 10.1186/s13662-022-03714-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667956906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667956906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9F87Ca7x1r8goIXPYdsMltTutmaZJX-e1NX0JOHYYbhfd8ZHoQuKbmmtBY3kXIhGCYsF5e0xPUJmjHJKS4Zr07_zOdoEeOWEMIaxiWpZ-h26YvRGwhJO1_sw2BHk9zgsfMf4NMQDsdlu4O--HTprbCQILgh6OT8pnAJ-niBzjq9i7D46XP0en_3snrE6-eHp9VyjQ0XPGEr20bXFKSsgVGtbVk2hljRAi1lKURTdaWWugVtKK2azggLHEhFbVOJyjI-R1dTbn7ofYSY1HYYg88nFRNCZlVDRFaxSWXCEGOATu2D63U4KErUEZeacKmMS33jUnU28ckUs9hvIPxG_-P6AizSbeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667956906</pqid></control><display><type>article</type><title>An uncertain production-inventory problem with deteriorating items</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Shen, Jiayu ; Jin, Yueqiang ; Liu, Bing ; Lu, Ziqiang ; Chen, Xin</creator><creatorcontrib>Shen, Jiayu ; Jin, Yueqiang ; Liu, Bing ; Lu, Ziqiang ; Chen, Xin</creatorcontrib><description>The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.</description><identifier>ISSN: 2731-4235</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 2731-4235</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-022-03714-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Confidence intervals ; Difference and Functional Equations ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Optimal control ; Optimization ; Ordinary Differential Equations ; Partial Differential Equations ; Uncertainty</subject><ispartof>Advances in continuous and discrete models, 2022-05, Vol.2022 (1), Article 42</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</citedby><cites>FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</cites><orcidid>0000-0002-7222-2492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2667956906/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2667956906?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Shen, Jiayu</creatorcontrib><creatorcontrib>Jin, Yueqiang</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Lu, Ziqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><title>An uncertain production-inventory problem with deteriorating items</title><title>Advances in continuous and discrete models</title><addtitle>Adv Cont Discr Mod</addtitle><description>The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.</description><subject>Analysis</subject><subject>Confidence intervals</subject><subject>Difference and Functional Equations</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Uncertainty</subject><issn>2731-4235</issn><issn>1687-1839</issn><issn>2731-4235</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9F87Ca7x1r8goIXPYdsMltTutmaZJX-e1NX0JOHYYbhfd8ZHoQuKbmmtBY3kXIhGCYsF5e0xPUJmjHJKS4Zr07_zOdoEeOWEMIaxiWpZ-h26YvRGwhJO1_sw2BHk9zgsfMf4NMQDsdlu4O--HTprbCQILgh6OT8pnAJ-niBzjq9i7D46XP0en_3snrE6-eHp9VyjQ0XPGEr20bXFKSsgVGtbVk2hljRAi1lKURTdaWWugVtKK2azggLHEhFbVOJyjI-R1dTbn7ofYSY1HYYg88nFRNCZlVDRFaxSWXCEGOATu2D63U4KErUEZeacKmMS33jUnU28ckUs9hvIPxG_-P6AizSbeA</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Shen, Jiayu</creator><creator>Jin, Yueqiang</creator><creator>Liu, Bing</creator><creator>Lu, Ziqiang</creator><creator>Chen, Xin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7222-2492</orcidid></search><sort><creationdate>20220523</creationdate><title>An uncertain production-inventory problem with deteriorating items</title><author>Shen, Jiayu ; Jin, Yueqiang ; Liu, Bing ; Lu, Ziqiang ; Chen, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Confidence intervals</topic><topic>Difference and Functional Equations</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jiayu</creatorcontrib><creatorcontrib>Jin, Yueqiang</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Lu, Ziqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in continuous and discrete models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jiayu</au><au>Jin, Yueqiang</au><au>Liu, Bing</au><au>Lu, Ziqiang</au><au>Chen, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An uncertain production-inventory problem with deteriorating items</atitle><jtitle>Advances in continuous and discrete models</jtitle><stitle>Adv Cont Discr Mod</stitle><date>2022-05-23</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><artnum>42</artnum><issn>2731-4235</issn><issn>1687-1839</issn><eissn>2731-4235</eissn><eissn>1687-1847</eissn><abstract>The uncertain production-inventory problem with deteriorating items is investigated and an optimal control model is developed in the present paper. The uncertain production-inventory problem is perturbed by an uncertain canonical process. Based on uncertainty theory, an optimistic-value optimal-based control model is established. The present study aims to find the optimistic value of revenue at a certain confidence level. The uncertainty theory is used to obtain the equation of optimality. Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation that has to be satisfied by a value function is obtained. Assuming a specific form of the solution, backsubstituting the partial differential equation to find functions of time is conducted, and the functions are then used to solve the partial differential equation. Numerical experiments with different demand functions are used to assess the feasibility of this model and this method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-022-03714-8</doi><orcidid>https://orcid.org/0000-0002-7222-2492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2731-4235
ispartof Advances in continuous and discrete models, 2022-05, Vol.2022 (1), Article 42
issn 2731-4235
1687-1839
2731-4235
1687-1847
language eng
recordid cdi_proquest_journals_2667956906
source Springer Nature - SpringerLink Journals - Fully Open Access; DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest)
subjects Analysis
Confidence intervals
Difference and Functional Equations
Functional Analysis
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Optimal control
Optimization
Ordinary Differential Equations
Partial Differential Equations
Uncertainty
title An uncertain production-inventory problem with deteriorating items
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20uncertain%20production-inventory%20problem%20with%20deteriorating%20items&rft.jtitle=Advances%20in%20continuous%20and%20discrete%20models&rft.au=Shen,%20Jiayu&rft.date=2022-05-23&rft.volume=2022&rft.issue=1&rft.artnum=42&rft.issn=2731-4235&rft.eissn=2731-4235&rft_id=info:doi/10.1186/s13662-022-03714-8&rft_dat=%3Cproquest_cross%3E2667956906%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d7b9a81e778e21aad449c0d6be14746695f4a7abeac1159fc6de3e051d9565d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667956906&rft_id=info:pmid/&rfr_iscdi=true