Loading…

Risk-Driven Design of Perception Systems

Modern autonomous systems rely on perception modules to process complex sensor measurements into state estimates. These estimates are then passed to a controller, which uses them to make safety-critical decisions. It is therefore important that we design perception systems to minimize errors that re...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-10
Main Authors: Corso, Anthony L, Katz, Sydney M, Innes, Craig, Du, Xin, Ramamoorthy, Subramanian, Kochenderfer, Mykel J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Corso, Anthony L
Katz, Sydney M
Innes, Craig
Du, Xin
Ramamoorthy, Subramanian
Kochenderfer, Mykel J
description Modern autonomous systems rely on perception modules to process complex sensor measurements into state estimates. These estimates are then passed to a controller, which uses them to make safety-critical decisions. It is therefore important that we design perception systems to minimize errors that reduce the overall safety of the system. We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system. We formulate a risk function to quantify the effect of a given perceptual error on overall safety, and show how we can use it to design safer perception systems by including a risk-dependent term in the loss function and generating training data in risk-sensitive regions. We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2668584335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668584335</sourcerecordid><originalsourceid>FETCH-proquest_journals_26685843353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCMosztZ1KcosS81TcEktzkzPU8hPUwhILUpOLSjJzM9TCK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjMzMLUwsTY2NTY-JUAQCMzi__</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668584335</pqid></control><display><type>article</type><title>Risk-Driven Design of Perception Systems</title><source>Publicly Available Content (ProQuest)</source><creator>Corso, Anthony L ; Katz, Sydney M ; Innes, Craig ; Du, Xin ; Ramamoorthy, Subramanian ; Kochenderfer, Mykel J</creator><creatorcontrib>Corso, Anthony L ; Katz, Sydney M ; Innes, Craig ; Du, Xin ; Ramamoorthy, Subramanian ; Kochenderfer, Mykel J</creatorcontrib><description>Modern autonomous systems rely on perception modules to process complex sensor measurements into state estimates. These estimates are then passed to a controller, which uses them to make safety-critical decisions. It is therefore important that we design perception systems to minimize errors that reduce the overall safety of the system. We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system. We formulate a risk function to quantify the effect of a given perceptual error on overall safety, and show how we can use it to design safer perception systems by including a risk-dependent term in the loss function and generating training data in risk-sensitive regions. We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collision avoidance ; Estimates ; Feedback control ; Perception ; Perceptual errors ; Safety critical</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2668584335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Corso, Anthony L</creatorcontrib><creatorcontrib>Katz, Sydney M</creatorcontrib><creatorcontrib>Innes, Craig</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>Ramamoorthy, Subramanian</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J</creatorcontrib><title>Risk-Driven Design of Perception Systems</title><title>arXiv.org</title><description>Modern autonomous systems rely on perception modules to process complex sensor measurements into state estimates. These estimates are then passed to a controller, which uses them to make safety-critical decisions. It is therefore important that we design perception systems to minimize errors that reduce the overall safety of the system. We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system. We formulate a risk function to quantify the effect of a given perceptual error on overall safety, and show how we can use it to design safer perception systems by including a risk-dependent term in the loss function and generating training data in risk-sensitive regions. We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.</description><subject>Collision avoidance</subject><subject>Estimates</subject><subject>Feedback control</subject><subject>Perception</subject><subject>Perceptual errors</subject><subject>Safety critical</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCMosztZ1KcosS81TcEktzkzPU8hPUwhILUpOLSjJzM9TCK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjMzMLUwsTY2NTY-JUAQCMzi__</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Corso, Anthony L</creator><creator>Katz, Sydney M</creator><creator>Innes, Craig</creator><creator>Du, Xin</creator><creator>Ramamoorthy, Subramanian</creator><creator>Kochenderfer, Mykel J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221012</creationdate><title>Risk-Driven Design of Perception Systems</title><author>Corso, Anthony L ; Katz, Sydney M ; Innes, Craig ; Du, Xin ; Ramamoorthy, Subramanian ; Kochenderfer, Mykel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26685843353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collision avoidance</topic><topic>Estimates</topic><topic>Feedback control</topic><topic>Perception</topic><topic>Perceptual errors</topic><topic>Safety critical</topic><toplevel>online_resources</toplevel><creatorcontrib>Corso, Anthony L</creatorcontrib><creatorcontrib>Katz, Sydney M</creatorcontrib><creatorcontrib>Innes, Craig</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>Ramamoorthy, Subramanian</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corso, Anthony L</au><au>Katz, Sydney M</au><au>Innes, Craig</au><au>Du, Xin</au><au>Ramamoorthy, Subramanian</au><au>Kochenderfer, Mykel J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Risk-Driven Design of Perception Systems</atitle><jtitle>arXiv.org</jtitle><date>2022-10-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Modern autonomous systems rely on perception modules to process complex sensor measurements into state estimates. These estimates are then passed to a controller, which uses them to make safety-critical decisions. It is therefore important that we design perception systems to minimize errors that reduce the overall safety of the system. We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system. We formulate a risk function to quantify the effect of a given perceptual error on overall safety, and show how we can use it to design safer perception systems by including a risk-dependent term in the loss function and generating training data in risk-sensitive regions. We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2668584335
source Publicly Available Content (ProQuest)
subjects Collision avoidance
Estimates
Feedback control
Perception
Perceptual errors
Safety critical
title Risk-Driven Design of Perception Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Risk-Driven%20Design%20of%20Perception%20Systems&rft.jtitle=arXiv.org&rft.au=Corso,%20Anthony%20L&rft.date=2022-10-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2668584335%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26685843353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2668584335&rft_id=info:pmid/&rfr_iscdi=true