Loading…

Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups

Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-...

Full description

Saved in:
Bibliographic Details
Published in:Canadian mathematical bulletin 2022-06, Vol.65 (2), p.381-399
Main Authors: McKee, Andrew, Pourshahami, Reyhaneh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143
cites cdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143
container_end_page 399
container_issue 2
container_start_page 381
container_title Canadian mathematical bulletin
container_volume 65
creator McKee, Andrew
Pourshahami, Reyhaneh
description Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on $C^*$ -algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for $C^*$ -algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying $w^*$ -dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.
doi_str_mv 10.4153/S0008439521000333
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2668856197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439521000333</cupid><sourcerecordid>2668856197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOPoB7gKuq0lvnsth8AUDLtR1SdN06NA2NWnB-XvTcdCFuLqHc-4594HQNSW3jHK4eyWEKAaa5zQhADhBC8q0yFiu5ClazHI26-foIsYdIVRyyRfIrzrXm7J12PQVbvreBWx-KDs2vo8HyQxD8J9NZ2YKJzy4MDYu4toHbIOP0VUzXU12jLjc49Zb07Z7bH03pCC8DX4a4iU6q00b3dWxLtH7w_3b-inbvDw-r1ebzAKVY2ZKnQNVpROSGKVVBU44UdZWgbOgoWY5t8ZwCdo6YNpagLrkrBaGWUsZLNHNd25a6WNycSx2fgp9GlnkQijFBdUyddHvrsMBwdXFENKJYV9QUsx_Lf78NXng6DFdGZpq636j_3d9AYFifE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668856197</pqid></control><display><type>article</type><title>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</title><source>Alma/SFX Local Collection</source><creator>McKee, Andrew ; Pourshahami, Reyhaneh</creator><creatorcontrib>McKee, Andrew ; Pourshahami, Reyhaneh</creatorcontrib><description>Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on $C^*$ -algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for $C^*$ -algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying $w^*$ -dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439521000333</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Algebra ; Approximation ; Group theory ; Mathematical analysis</subject><ispartof>Canadian mathematical bulletin, 2022-06, Vol.65 (2), p.381-399</ispartof><rights>Canadian Mathematical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</citedby><cites>FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>McKee, Andrew</creatorcontrib><creatorcontrib>Pourshahami, Reyhaneh</creatorcontrib><title>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on $C^*$ -algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for $C^*$ -algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying $w^*$ -dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOPoB7gKuq0lvnsth8AUDLtR1SdN06NA2NWnB-XvTcdCFuLqHc-4594HQNSW3jHK4eyWEKAaa5zQhADhBC8q0yFiu5ClazHI26-foIsYdIVRyyRfIrzrXm7J12PQVbvreBWx-KDs2vo8HyQxD8J9NZ2YKJzy4MDYu4toHbIOP0VUzXU12jLjc49Zb07Z7bH03pCC8DX4a4iU6q00b3dWxLtH7w_3b-inbvDw-r1ebzAKVY2ZKnQNVpROSGKVVBU44UdZWgbOgoWY5t8ZwCdo6YNpagLrkrBaGWUsZLNHNd25a6WNycSx2fgp9GlnkQijFBdUyddHvrsMBwdXFENKJYV9QUsx_Lf78NXng6DFdGZpq636j_3d9AYFifE4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>McKee, Andrew</creator><creator>Pourshahami, Reyhaneh</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220601</creationdate><title>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</title><author>McKee, Andrew ; Pourshahami, Reyhaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKee, Andrew</creatorcontrib><creatorcontrib>Pourshahami, Reyhaneh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKee, Andrew</au><au>Pourshahami, Reyhaneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>65</volume><issue>2</issue><spage>381</spage><epage>399</epage><pages>381-399</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on $C^*$ -algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for $C^*$ -algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying $w^*$ -dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439521000333</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4395
ispartof Canadian mathematical bulletin, 2022-06, Vol.65 (2), p.381-399
issn 0008-4395
1496-4287
language eng
recordid cdi_proquest_journals_2668856197
source Alma/SFX Local Collection
subjects Algebra
Approximation
Group theory
Mathematical analysis
title Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amenable%20and%20inner%20amenable%20actions%20and%20approximation%20properties%20for%20crossed%20products%20by%20locally%20compact%20groups&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=McKee,%20Andrew&rft.date=2022-06-01&rft.volume=65&rft.issue=2&rft.spage=381&rft.epage=399&rft.pages=381-399&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439521000333&rft_dat=%3Cproquest_cross%3E2668856197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2668856197&rft_id=info:pmid/&rft_cupid=10_4153_S0008439521000333&rfr_iscdi=true