Loading…
Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups
Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-...
Saved in:
Published in: | Canadian mathematical bulletin 2022-06, Vol.65 (2), p.381-399 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143 |
container_end_page | 399 |
container_issue | 2 |
container_start_page | 381 |
container_title | Canadian mathematical bulletin |
container_volume | 65 |
creator | McKee, Andrew Pourshahami, Reyhaneh |
description | Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on
$C^*$
-algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for
$C^*$
-algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying
$w^*$
-dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett. |
doi_str_mv | 10.4153/S0008439521000333 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2668856197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439521000333</cupid><sourcerecordid>2668856197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOPoB7gKuq0lvnsth8AUDLtR1SdN06NA2NWnB-XvTcdCFuLqHc-4594HQNSW3jHK4eyWEKAaa5zQhADhBC8q0yFiu5ClazHI26-foIsYdIVRyyRfIrzrXm7J12PQVbvreBWx-KDs2vo8HyQxD8J9NZ2YKJzy4MDYu4toHbIOP0VUzXU12jLjc49Zb07Z7bH03pCC8DX4a4iU6q00b3dWxLtH7w_3b-inbvDw-r1ebzAKVY2ZKnQNVpROSGKVVBU44UdZWgbOgoWY5t8ZwCdo6YNpagLrkrBaGWUsZLNHNd25a6WNycSx2fgp9GlnkQijFBdUyddHvrsMBwdXFENKJYV9QUsx_Lf78NXng6DFdGZpq636j_3d9AYFifE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668856197</pqid></control><display><type>article</type><title>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</title><source>Alma/SFX Local Collection</source><creator>McKee, Andrew ; Pourshahami, Reyhaneh</creator><creatorcontrib>McKee, Andrew ; Pourshahami, Reyhaneh</creatorcontrib><description>Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on
$C^*$
-algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for
$C^*$
-algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying
$w^*$
-dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439521000333</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Algebra ; Approximation ; Group theory ; Mathematical analysis</subject><ispartof>Canadian mathematical bulletin, 2022-06, Vol.65 (2), p.381-399</ispartof><rights>Canadian Mathematical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</citedby><cites>FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>McKee, Andrew</creatorcontrib><creatorcontrib>Pourshahami, Reyhaneh</creatorcontrib><title>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on
$C^*$
-algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for
$C^*$
-algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying
$w^*$
-dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOPoB7gKuq0lvnsth8AUDLtR1SdN06NA2NWnB-XvTcdCFuLqHc-4594HQNSW3jHK4eyWEKAaa5zQhADhBC8q0yFiu5ClazHI26-foIsYdIVRyyRfIrzrXm7J12PQVbvreBWx-KDs2vo8HyQxD8J9NZ2YKJzy4MDYu4toHbIOP0VUzXU12jLjc49Zb07Z7bH03pCC8DX4a4iU6q00b3dWxLtH7w_3b-inbvDw-r1ebzAKVY2ZKnQNVpROSGKVVBU44UdZWgbOgoWY5t8ZwCdo6YNpagLrkrBaGWUsZLNHNd25a6WNycSx2fgp9GlnkQijFBdUyddHvrsMBwdXFENKJYV9QUsx_Lf78NXng6DFdGZpq636j_3d9AYFifE4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>McKee, Andrew</creator><creator>Pourshahami, Reyhaneh</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220601</creationdate><title>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</title><author>McKee, Andrew ; Pourshahami, Reyhaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKee, Andrew</creatorcontrib><creatorcontrib>Pourshahami, Reyhaneh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKee, Andrew</au><au>Pourshahami, Reyhaneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>65</volume><issue>2</issue><spage>381</spage><epage>399</epage><pages>381-399</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>Amenable actions of locally compact groups on von Neumann algebras are investigated by exploiting the natural module structure of the crossed product over the Fourier algebra of the acting group. The resulting characterization of injectivity for crossed products generalizes a result of Anantharaman-Delaroche on discrete groups. Amenable actions of locally compact groups on
$C^*$
-algebras are investigated in the same way, and amenability of the action is related to nuclearity of the corresponding crossed product. A survey is given to show that this notion of amenable action for
$C^*$
-algebras satisfies a number of expected properties. A notion of inner amenability for actions of locally compact groups is introduced, and a number of applications are given in the form of averaging arguments, relating approximation properties of crossed product von Neumann algebras to properties of the components of the underlying
$w^*$
-dynamical system. We use these results to answer a recent question of Buss, Echterhoff, and Willett.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439521000333</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4395 |
ispartof | Canadian mathematical bulletin, 2022-06, Vol.65 (2), p.381-399 |
issn | 0008-4395 1496-4287 |
language | eng |
recordid | cdi_proquest_journals_2668856197 |
source | Alma/SFX Local Collection |
subjects | Algebra Approximation Group theory Mathematical analysis |
title | Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amenable%20and%20inner%20amenable%20actions%20and%20approximation%20properties%20for%20crossed%20products%20by%20locally%20compact%20groups&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=McKee,%20Andrew&rft.date=2022-06-01&rft.volume=65&rft.issue=2&rft.spage=381&rft.epage=399&rft.pages=381-399&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439521000333&rft_dat=%3Cproquest_cross%3E2668856197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-ab92318be670a898d3e6e6bfc83ec393f425caa5739ce349cc33fb54f6a4cc143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2668856197&rft_id=info:pmid/&rft_cupid=10_4153_S0008439521000333&rfr_iscdi=true |