Loading…

Polarization error in resonant micro-optic gyroscope with different waveguide-type ring resonator structures

The waveguide-type ring resonator (WRR) is the key rotation-sensing element in a resonant micro-optic gyroscope (RMOG). A universal model used to analyze both the polarization characteristics of the WRR and corresponding temperature-related polarization error in the RMOG is presented. It indicates t...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2022-05, Vol.61 (15), p.4287
Main Authors: Liu, Shuang, Lin, Yi, Jin, Xiaojun, Ma, Huilian, Jin, Zhonghe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The waveguide-type ring resonator (WRR) is the key rotation-sensing element in a resonant micro-optic gyroscope (RMOG). A universal model used to analyze both the polarization characteristics of the WRR and corresponding temperature-related polarization error in the RMOG is presented. It indicates that the polarization problem stems from the excitation of two polarization states within the WRR. Unequal variations of incident lights on the cavity in the two directions can cause bias errors at the RMOG output. With the application of different silica WRRs to the RMOG, the polarization errors are tested and verify the theoretical results. Finally, a segment of tilted waveguide gratings with Brewster’s angle is fabricated on the silica waveguide within the cavity. The measured polarization extinction ratio of the output light from the WRR is as high as 35.2 dB. The corresponding temperature dependence of the polarization error is theoretically reduced to 0.0019 (°/s)/°C, which indicates that temperature control is sufficient for a tactical grade RMOG.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.457490