Loading…
Semi-Parametric Inducing Point Networks and Neural Processes
We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often qu...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rastogi, Richa Schiff, Yair Hacohen, Alon Li, Zhaozhi Lee, Ian Deng, Yuntian Sabuncu, Mert R Kuleshov, Volodymyr |
description | We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often quadratic. In contrast, SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods. Querying large training sets can be particularly useful in meta-learning, as it unlocks additional training signal, but often exceeds the scaling limits of existing models. We use SPIN as the basis of the Inducing Point Neural Process, a probabilistic model which supports large contexts in meta-learning and achieves high accuracy where existing models fail. In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2669230230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669230230</sourcerecordid><originalsourceid>FETCH-proquest_journals_26692302303</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCU7NzdQNSCxKzE0tKcpMVvDMSylNzsxLVwjIz8wrUfBLLSnPL8ouVkjMSwFySosScxQCivKTU4uLU4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzM0sjYAIiMiVMFAC6uN28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669230230</pqid></control><display><type>article</type><title>Semi-Parametric Inducing Point Networks and Neural Processes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Rastogi, Richa ; Schiff, Yair ; Hacohen, Alon ; Li, Zhaozhi ; Lee, Ian ; Deng, Yuntian ; Sabuncu, Mert R ; Kuleshov, Volodymyr</creator><creatorcontrib>Rastogi, Richa ; Schiff, Yair ; Hacohen, Alon ; Li, Zhaozhi ; Lee, Ian ; Deng, Yuntian ; Sabuncu, Mert R ; Kuleshov, Volodymyr</creatorcontrib><description>We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often quadratic. In contrast, SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods. Querying large training sets can be particularly useful in meta-learning, as it unlocks additional training signal, but often exceeds the scaling limits of existing models. We use SPIN as the basis of the Inducing Point Neural Process, a probabilistic model which supports large contexts in meta-learning and achieves high accuracy where existing models fail. In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Computational efficiency ; Computer architecture ; Computing costs ; Inference ; Machine learning ; Neural networks ; Training</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2669230230?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Rastogi, Richa</creatorcontrib><creatorcontrib>Schiff, Yair</creatorcontrib><creatorcontrib>Hacohen, Alon</creatorcontrib><creatorcontrib>Li, Zhaozhi</creatorcontrib><creatorcontrib>Lee, Ian</creatorcontrib><creatorcontrib>Deng, Yuntian</creatorcontrib><creatorcontrib>Sabuncu, Mert R</creatorcontrib><creatorcontrib>Kuleshov, Volodymyr</creatorcontrib><title>Semi-Parametric Inducing Point Networks and Neural Processes</title><title>arXiv.org</title><description>We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often quadratic. In contrast, SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods. Querying large training sets can be particularly useful in meta-learning, as it unlocks additional training signal, but often exceeds the scaling limits of existing models. We use SPIN as the basis of the Inducing Point Neural Process, a probabilistic model which supports large contexts in meta-learning and achieves high accuracy where existing models fail. In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.</description><subject>Artificial neural networks</subject><subject>Computational efficiency</subject><subject>Computer architecture</subject><subject>Computing costs</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCU7NzdQNSCxKzE0tKcpMVvDMSylNzsxLVwjIz8wrUfBLLSnPL8ouVkjMSwFySosScxQCivKTU4uLU4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzM0sjYAIiMiVMFAC6uN28</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Rastogi, Richa</creator><creator>Schiff, Yair</creator><creator>Hacohen, Alon</creator><creator>Li, Zhaozhi</creator><creator>Lee, Ian</creator><creator>Deng, Yuntian</creator><creator>Sabuncu, Mert R</creator><creator>Kuleshov, Volodymyr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230330</creationdate><title>Semi-Parametric Inducing Point Networks and Neural Processes</title><author>Rastogi, Richa ; Schiff, Yair ; Hacohen, Alon ; Li, Zhaozhi ; Lee, Ian ; Deng, Yuntian ; Sabuncu, Mert R ; Kuleshov, Volodymyr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26692302303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Computational efficiency</topic><topic>Computer architecture</topic><topic>Computing costs</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Rastogi, Richa</creatorcontrib><creatorcontrib>Schiff, Yair</creatorcontrib><creatorcontrib>Hacohen, Alon</creatorcontrib><creatorcontrib>Li, Zhaozhi</creatorcontrib><creatorcontrib>Lee, Ian</creatorcontrib><creatorcontrib>Deng, Yuntian</creatorcontrib><creatorcontrib>Sabuncu, Mert R</creatorcontrib><creatorcontrib>Kuleshov, Volodymyr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rastogi, Richa</au><au>Schiff, Yair</au><au>Hacohen, Alon</au><au>Li, Zhaozhi</au><au>Lee, Ian</au><au>Deng, Yuntian</au><au>Sabuncu, Mert R</au><au>Kuleshov, Volodymyr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semi-Parametric Inducing Point Networks and Neural Processes</atitle><jtitle>arXiv.org</jtitle><date>2023-03-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often quadratic. In contrast, SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods. Querying large training sets can be particularly useful in meta-learning, as it unlocks additional training signal, but often exceeds the scaling limits of existing models. We use SPIN as the basis of the Inducing Point Neural Process, a probabilistic model which supports large contexts in meta-learning and achieves high accuracy where existing models fail. In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2669230230 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Artificial neural networks Computational efficiency Computer architecture Computing costs Inference Machine learning Neural networks Training |
title | Semi-Parametric Inducing Point Networks and Neural Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semi-Parametric%20Inducing%20Point%20Networks%20and%20Neural%20Processes&rft.jtitle=arXiv.org&rft.au=Rastogi,%20Richa&rft.date=2023-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2669230230%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26692302303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2669230230&rft_id=info:pmid/&rfr_iscdi=true |