Loading…

KGBoost: A classification-based knowledge base completion method with negative sampling

•A modularized design of a classification-based method for knowledge base completion.•Relation inference patterns are incorporated during training.•Two novel negative sampling strategies are proposed.•Extensive experiments and analysis on four benchmark datasets. Knowledge base completion is formula...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 2022-05, Vol.157, p.104-111
Main Authors: Wang, Yun-Cheng, Ge, Xiou, Wang, Bin, Kuo, C.-C. Jay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743
cites cdi_FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743
container_end_page 111
container_issue
container_start_page 104
container_title Pattern recognition letters
container_volume 157
creator Wang, Yun-Cheng
Ge, Xiou
Wang, Bin
Kuo, C.-C. Jay
description •A modularized design of a classification-based method for knowledge base completion.•Relation inference patterns are incorporated during training.•Two novel negative sampling strategies are proposed.•Extensive experiments and analysis on four benchmark datasets. Knowledge base completion is formulated as a binary classification problem in this work, where an XGBoost binary classifier is trained for each relation using relevant links in knowledge graphs (KGs). The new method, named KGBoost, adopts a modularized design and attempts to find hard negative samples so as to train a powerful classifier for missing link prediction. We conduct experiments on multiple benchmark datasets and demonstrate that KGBoost outperforms state-of-the-art methods across most datasets. Furthermore, as compared with models trained by end-to-end optimization, KGBoost works well under the low-dimensional setting so as to allow a smaller model size.
doi_str_mv 10.1016/j.patrec.2022.04.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2669600250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865522000939</els_id><sourcerecordid>2669600250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Bi4DrGW8ek5lxIdSiVSy4UVyGNLltU9tJnUxb_HtTxrWrw-U8LucQcs0gZ8DU7Srfmq5Fm3PgPAeZA7ATMmBVybNSSHlKBklWZpUqinNyEeMKAJSoqwH5fJ08hBC7Ozqidm1i9HNvTedDk81MREe_mnBYo1sgPd7Uhs12jUeebrBbBkcPvlvSBhfJtEcaTeJ9s7gkZ3Ozjnj1h0Py8fT4Pn7Opm-Tl_FomlkhZJdJB4ILxwygK1lVSOVgnqBmRW2UlAVPJZiolIGSzxRYJqThODM1F7YqpRiSmz5324bvHcZOr8KubdJLzZWqFQAvIKlkr7JtiLHFud62fmPaH81AHyfUK91PqI8TapA6TZhs970NU4O9x1ZH67Gx6HySdtoF_3_AL9w9erw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669600250</pqid></control><display><type>article</type><title>KGBoost: A classification-based knowledge base completion method with negative sampling</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Yun-Cheng ; Ge, Xiou ; Wang, Bin ; Kuo, C.-C. Jay</creator><creatorcontrib>Wang, Yun-Cheng ; Ge, Xiou ; Wang, Bin ; Kuo, C.-C. Jay</creatorcontrib><description>•A modularized design of a classification-based method for knowledge base completion.•Relation inference patterns are incorporated during training.•Two novel negative sampling strategies are proposed.•Extensive experiments and analysis on four benchmark datasets. Knowledge base completion is formulated as a binary classification problem in this work, where an XGBoost binary classifier is trained for each relation using relevant links in knowledge graphs (KGs). The new method, named KGBoost, adopts a modularized design and attempts to find hard negative samples so as to train a powerful classifier for missing link prediction. We conduct experiments on multiple benchmark datasets and demonstrate that KGBoost outperforms state-of-the-art methods across most datasets. Furthermore, as compared with models trained by end-to-end optimization, KGBoost works well under the low-dimensional setting so as to allow a smaller model size.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2022.04.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Binary classification ; Classification ; Classifiers ; Datasets ; Knowledge base completion ; Knowledge bases (artificial intelligence) ; Knowledge representation ; Modular design ; Negative sampling ; Optimization ; XGBoost Classifiers</subject><ispartof>Pattern recognition letters, 2022-05, Vol.157, p.104-111</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743</citedby><cites>FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743</cites><orcidid>0000-0001-9778-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Yun-Cheng</creatorcontrib><creatorcontrib>Ge, Xiou</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Kuo, C.-C. Jay</creatorcontrib><title>KGBoost: A classification-based knowledge base completion method with negative sampling</title><title>Pattern recognition letters</title><description>•A modularized design of a classification-based method for knowledge base completion.•Relation inference patterns are incorporated during training.•Two novel negative sampling strategies are proposed.•Extensive experiments and analysis on four benchmark datasets. Knowledge base completion is formulated as a binary classification problem in this work, where an XGBoost binary classifier is trained for each relation using relevant links in knowledge graphs (KGs). The new method, named KGBoost, adopts a modularized design and attempts to find hard negative samples so as to train a powerful classifier for missing link prediction. We conduct experiments on multiple benchmark datasets and demonstrate that KGBoost outperforms state-of-the-art methods across most datasets. Furthermore, as compared with models trained by end-to-end optimization, KGBoost works well under the low-dimensional setting so as to allow a smaller model size.</description><subject>Binary classification</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Knowledge base completion</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Knowledge representation</subject><subject>Modular design</subject><subject>Negative sampling</subject><subject>Optimization</subject><subject>XGBoost Classifiers</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrf6Bi4DrGW8ek5lxIdSiVSy4UVyGNLltU9tJnUxb_HtTxrWrw-U8LucQcs0gZ8DU7Srfmq5Fm3PgPAeZA7ATMmBVybNSSHlKBklWZpUqinNyEeMKAJSoqwH5fJ08hBC7Ozqidm1i9HNvTedDk81MREe_mnBYo1sgPd7Uhs12jUeebrBbBkcPvlvSBhfJtEcaTeJ9s7gkZ3Ozjnj1h0Py8fT4Pn7Opm-Tl_FomlkhZJdJB4ILxwygK1lVSOVgnqBmRW2UlAVPJZiolIGSzxRYJqThODM1F7YqpRiSmz5324bvHcZOr8KubdJLzZWqFQAvIKlkr7JtiLHFud62fmPaH81AHyfUK91PqI8TapA6TZhs970NU4O9x1ZH67Gx6HySdtoF_3_AL9w9erw</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Wang, Yun-Cheng</creator><creator>Ge, Xiou</creator><creator>Wang, Bin</creator><creator>Kuo, C.-C. Jay</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9778-4806</orcidid></search><sort><creationdate>202205</creationdate><title>KGBoost: A classification-based knowledge base completion method with negative sampling</title><author>Wang, Yun-Cheng ; Ge, Xiou ; Wang, Bin ; Kuo, C.-C. Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary classification</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Knowledge base completion</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Knowledge representation</topic><topic>Modular design</topic><topic>Negative sampling</topic><topic>Optimization</topic><topic>XGBoost Classifiers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yun-Cheng</creatorcontrib><creatorcontrib>Ge, Xiou</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Kuo, C.-C. Jay</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yun-Cheng</au><au>Ge, Xiou</au><au>Wang, Bin</au><au>Kuo, C.-C. Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KGBoost: A classification-based knowledge base completion method with negative sampling</atitle><jtitle>Pattern recognition letters</jtitle><date>2022-05</date><risdate>2022</risdate><volume>157</volume><spage>104</spage><epage>111</epage><pages>104-111</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•A modularized design of a classification-based method for knowledge base completion.•Relation inference patterns are incorporated during training.•Two novel negative sampling strategies are proposed.•Extensive experiments and analysis on four benchmark datasets. Knowledge base completion is formulated as a binary classification problem in this work, where an XGBoost binary classifier is trained for each relation using relevant links in knowledge graphs (KGs). The new method, named KGBoost, adopts a modularized design and attempts to find hard negative samples so as to train a powerful classifier for missing link prediction. We conduct experiments on multiple benchmark datasets and demonstrate that KGBoost outperforms state-of-the-art methods across most datasets. Furthermore, as compared with models trained by end-to-end optimization, KGBoost works well under the low-dimensional setting so as to allow a smaller model size.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2022.04.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9778-4806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2022-05, Vol.157, p.104-111
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2669600250
source ScienceDirect Freedom Collection
subjects Binary classification
Classification
Classifiers
Datasets
Knowledge base completion
Knowledge bases (artificial intelligence)
Knowledge representation
Modular design
Negative sampling
Optimization
XGBoost Classifiers
title KGBoost: A classification-based knowledge base completion method with negative sampling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KGBoost:%20A%20classification-based%20knowledge%20base%20completion%20method%20with%20negative%20sampling&rft.jtitle=Pattern%20recognition%20letters&rft.au=Wang,%20Yun-Cheng&rft.date=2022-05&rft.volume=157&rft.spage=104&rft.epage=111&rft.pages=104-111&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2022.04.001&rft_dat=%3Cproquest_cross%3E2669600250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-4d0323d1a0ed718546d0f8549159a644521871386a072b60c134a2eba923c8743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2669600250&rft_id=info:pmid/&rfr_iscdi=true