Loading…
DFM: Dialogue Foundation Model for Universal Large-Scale Dialogue-Oriented Task Learning
Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tas...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Zhi Bao, Jijia Chen, Lu Liu, Yuncong Ma, Da Chen, Bei Wu, Mengyue Zhu, Su Dong, Xin Ge, Fujiang Miao, Qingliang Jian-Guang Lou Yu, Kai |
description | Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tasks. To achieve this goal, a large-scale well-annotated dialogue dataset with rich task diversity (DialogZoo) is collected. We introduce a framework to unify all dialogue tasks and propose novel auxiliary self-supervised tasks to achieve stable training of DFM on the highly diverse large scale DialogZoo corpus. Experiments show that, compared with models of the same size, DFM can achieve state-of-the-art or competitive performance on very rich cross-domain downstream dialogue tasks. This demonstrates that DFM largely extends the ability of unified dialogue pre-trained model. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2669771865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669771865</sourcerecordid><originalsourceid>FETCH-proquest_journals_26697718653</originalsourceid><addsrcrecordid>eNqNi0ELgjAYQEcQJOV_GHQe6MxpXTPpoHTIoJt85KfMxlab6_fXITp3eof33owEPElilm84X5DQuTGKIi4ynqZJQK5FWe9oIUGZwSMtjdcdTNJoWpsOFe2NpRctX2gdKFqBHZCdb6Dw97CTlagn7GgD7k4rBKulHlZk3oNyGH65JOvy0OyP7GHN06Ob2tF4qz-q5UJssyzORZr8V70B_B1BBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669771865</pqid></control><display><type>article</type><title>DFM: Dialogue Foundation Model for Universal Large-Scale Dialogue-Oriented Task Learning</title><source>Publicly Available Content (ProQuest)</source><creator>Chen, Zhi ; Bao, Jijia ; Chen, Lu ; Liu, Yuncong ; Ma, Da ; Chen, Bei ; Wu, Mengyue ; Zhu, Su ; Dong, Xin ; Ge, Fujiang ; Miao, Qingliang ; Jian-Guang Lou ; Yu, Kai</creator><creatorcontrib>Chen, Zhi ; Bao, Jijia ; Chen, Lu ; Liu, Yuncong ; Ma, Da ; Chen, Bei ; Wu, Mengyue ; Zhu, Su ; Dong, Xin ; Ge, Fujiang ; Miao, Qingliang ; Jian-Guang Lou ; Yu, Kai</creatorcontrib><description>Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tasks. To achieve this goal, a large-scale well-annotated dialogue dataset with rich task diversity (DialogZoo) is collected. We introduce a framework to unify all dialogue tasks and propose novel auxiliary self-supervised tasks to achieve stable training of DFM on the highly diverse large scale DialogZoo corpus. Experiments show that, compared with models of the same size, DFM can achieve state-of-the-art or competitive performance on very rich cross-domain downstream dialogue tasks. This demonstrates that DFM largely extends the ability of unified dialogue pre-trained model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Distillation ; Downstream effects ; Skills</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2669771865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Bao, Jijia</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Yuncong</creatorcontrib><creatorcontrib>Ma, Da</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Wu, Mengyue</creatorcontrib><creatorcontrib>Zhu, Su</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Ge, Fujiang</creatorcontrib><creatorcontrib>Miao, Qingliang</creatorcontrib><creatorcontrib>Jian-Guang Lou</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><title>DFM: Dialogue Foundation Model for Universal Large-Scale Dialogue-Oriented Task Learning</title><title>arXiv.org</title><description>Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tasks. To achieve this goal, a large-scale well-annotated dialogue dataset with rich task diversity (DialogZoo) is collected. We introduce a framework to unify all dialogue tasks and propose novel auxiliary self-supervised tasks to achieve stable training of DFM on the highly diverse large scale DialogZoo corpus. Experiments show that, compared with models of the same size, DFM can achieve state-of-the-art or competitive performance on very rich cross-domain downstream dialogue tasks. This demonstrates that DFM largely extends the ability of unified dialogue pre-trained model.</description><subject>Datasets</subject><subject>Distillation</subject><subject>Downstream effects</subject><subject>Skills</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0ELgjAYQEcQJOV_GHQe6MxpXTPpoHTIoJt85KfMxlab6_fXITp3eof33owEPElilm84X5DQuTGKIi4ynqZJQK5FWe9oIUGZwSMtjdcdTNJoWpsOFe2NpRctX2gdKFqBHZCdb6Dw97CTlagn7GgD7k4rBKulHlZk3oNyGH65JOvy0OyP7GHN06Ob2tF4qz-q5UJssyzORZr8V70B_B1BBg</recordid><startdate>20221009</startdate><enddate>20221009</enddate><creator>Chen, Zhi</creator><creator>Bao, Jijia</creator><creator>Chen, Lu</creator><creator>Liu, Yuncong</creator><creator>Ma, Da</creator><creator>Chen, Bei</creator><creator>Wu, Mengyue</creator><creator>Zhu, Su</creator><creator>Dong, Xin</creator><creator>Ge, Fujiang</creator><creator>Miao, Qingliang</creator><creator>Jian-Guang Lou</creator><creator>Yu, Kai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221009</creationdate><title>DFM: Dialogue Foundation Model for Universal Large-Scale Dialogue-Oriented Task Learning</title><author>Chen, Zhi ; Bao, Jijia ; Chen, Lu ; Liu, Yuncong ; Ma, Da ; Chen, Bei ; Wu, Mengyue ; Zhu, Su ; Dong, Xin ; Ge, Fujiang ; Miao, Qingliang ; Jian-Guang Lou ; Yu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26697718653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Distillation</topic><topic>Downstream effects</topic><topic>Skills</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Bao, Jijia</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Yuncong</creatorcontrib><creatorcontrib>Ma, Da</creatorcontrib><creatorcontrib>Chen, Bei</creatorcontrib><creatorcontrib>Wu, Mengyue</creatorcontrib><creatorcontrib>Zhu, Su</creatorcontrib><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Ge, Fujiang</creatorcontrib><creatorcontrib>Miao, Qingliang</creatorcontrib><creatorcontrib>Jian-Guang Lou</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi</au><au>Bao, Jijia</au><au>Chen, Lu</au><au>Liu, Yuncong</au><au>Ma, Da</au><au>Chen, Bei</au><au>Wu, Mengyue</au><au>Zhu, Su</au><au>Dong, Xin</au><au>Ge, Fujiang</au><au>Miao, Qingliang</au><au>Jian-Guang Lou</au><au>Yu, Kai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DFM: Dialogue Foundation Model for Universal Large-Scale Dialogue-Oriented Task Learning</atitle><jtitle>arXiv.org</jtitle><date>2022-10-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Building a universal conversational agent has been a long-standing goal of the dialogue research community. Most previous works only focus on a small set of dialogue tasks. In this work, we aim to build a unified dialogue foundation model (DFM) which can be used to solve massive diverse dialogue tasks. To achieve this goal, a large-scale well-annotated dialogue dataset with rich task diversity (DialogZoo) is collected. We introduce a framework to unify all dialogue tasks and propose novel auxiliary self-supervised tasks to achieve stable training of DFM on the highly diverse large scale DialogZoo corpus. Experiments show that, compared with models of the same size, DFM can achieve state-of-the-art or competitive performance on very rich cross-domain downstream dialogue tasks. This demonstrates that DFM largely extends the ability of unified dialogue pre-trained model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2669771865 |
source | Publicly Available Content (ProQuest) |
subjects | Datasets Distillation Downstream effects Skills |
title | DFM: Dialogue Foundation Model for Universal Large-Scale Dialogue-Oriented Task Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DFM:%20Dialogue%20Foundation%20Model%20for%20Universal%20Large-Scale%20Dialogue-Oriented%20Task%20Learning&rft.jtitle=arXiv.org&rft.au=Chen,%20Zhi&rft.date=2022-10-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2669771865%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26697718653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2669771865&rft_id=info:pmid/&rfr_iscdi=true |