Loading…

Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network

Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power ava...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-05, Vol.11 (10), p.1609
Main Authors: Gnanavel, S., Sreekrishna, M., Mani, Vinodhini, Kumaran, G., Amshavalli, R. S., Alharbi, Sadeen, Maashi, Mashael, Khalaf, Osamah Ibrahim, Abdulsahib, Ghaida Muttashar, Alghamdi, Ans D., Aldhyani, Theyazn H. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273
cites cdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273
container_end_page
container_issue 10
container_start_page 1609
container_title Electronics (Basel)
container_volume 11
creator Gnanavel, S.
Sreekrishna, M.
Mani, Vinodhini
Kumaran, G.
Amshavalli, R. S.
Alharbi, Sadeen
Maashi, Mashael
Khalaf, Osamah Ibrahim
Abdulsahib, Ghaida Muttashar
Alghamdi, Ans D.
Aldhyani, Theyazn H. H.
description Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.
doi_str_mv 10.3390/electronics11101609
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670139973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670139973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks93tHEu1KpR6UPG4xPzB1HVTM1mk396t9eDBucwM8-Px5jF2LsUlAIor1zqTU-yCISmlkJXAIzZSosYCFarjP_MpmxBtxFAoYQZixPS80-2OAvHo-VL3beaLVhMFH1winiO_dnnQ5_nNHe7EdWf5Otr9Hto-OeKh45q_hDRYIeKPrqOY-Nrlr5jez9iJ1y25yW8fs-flzdPirlg93N4v5qvCqKnKxbQCfAWUEpVHVLXCqVfgy5nRtbUObOnRgkBXKhDS1K4UEhArDcbbgYcxuzjoblP87B3lZhP7NHxHjarqH7iGgYIDZVIkSs432xQ-dNo1UjT7OJt_4oRv8NhqdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670139973</pqid></control><display><type>article</type><title>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gnanavel, S. ; Sreekrishna, M. ; Mani, Vinodhini ; Kumaran, G. ; Amshavalli, R. S. ; Alharbi, Sadeen ; Maashi, Mashael ; Khalaf, Osamah Ibrahim ; Abdulsahib, Ghaida Muttashar ; Alghamdi, Ans D. ; Aldhyani, Theyazn H. H.</creator><creatorcontrib>Gnanavel, S. ; Sreekrishna, M. ; Mani, Vinodhini ; Kumaran, G. ; Amshavalli, R. S. ; Alharbi, Sadeen ; Maashi, Mashael ; Khalaf, Osamah Ibrahim ; Abdulsahib, Ghaida Muttashar ; Alghamdi, Ans D. ; Aldhyani, Theyazn H. H.</creatorcontrib><description>Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11101609</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Classifiers ; Communication ; Data loss ; Data mining ; Datasets ; Decision making ; Deep learning ; Failure ; Fault detection ; Faults ; Hazardous areas ; Machine learning ; Multilayer perceptrons ; Neural networks ; Nodes ; Sensors ; Support vector machines ; Technology assessment ; Wireless networks ; Wireless sensor networks</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (10), p.1609</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</citedby><cites>FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</cites><orcidid>0000-0003-1246-8762 ; 0000-0002-7583-6086 ; 0000-0003-1822-1357 ; 0000-0003-2344-0482 ; 0000-0002-0354-1297 ; 0000-0002-4750-8384 ; 0000-0003-0446-5430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670139973/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670139973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Kumaran, G.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Alharbi, Sadeen</creatorcontrib><creatorcontrib>Maashi, Mashael</creatorcontrib><creatorcontrib>Khalaf, Osamah Ibrahim</creatorcontrib><creatorcontrib>Abdulsahib, Ghaida Muttashar</creatorcontrib><creatorcontrib>Alghamdi, Ans D.</creatorcontrib><creatorcontrib>Aldhyani, Theyazn H. H.</creatorcontrib><title>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</title><title>Electronics (Basel)</title><description>Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Communication</subject><subject>Data loss</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Failure</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Hazardous areas</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Technology assessment</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks93tHEu1KpR6UPG4xPzB1HVTM1mk396t9eDBucwM8-Px5jF2LsUlAIor1zqTU-yCISmlkJXAIzZSosYCFarjP_MpmxBtxFAoYQZixPS80-2OAvHo-VL3beaLVhMFH1winiO_dnnQ5_nNHe7EdWf5Otr9Hto-OeKh45q_hDRYIeKPrqOY-Nrlr5jez9iJ1y25yW8fs-flzdPirlg93N4v5qvCqKnKxbQCfAWUEpVHVLXCqVfgy5nRtbUObOnRgkBXKhDS1K4UEhArDcbbgYcxuzjoblP87B3lZhP7NHxHjarqH7iGgYIDZVIkSs432xQ-dNo1UjT7OJt_4oRv8NhqdQ</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Gnanavel, S.</creator><creator>Sreekrishna, M.</creator><creator>Mani, Vinodhini</creator><creator>Kumaran, G.</creator><creator>Amshavalli, R. S.</creator><creator>Alharbi, Sadeen</creator><creator>Maashi, Mashael</creator><creator>Khalaf, Osamah Ibrahim</creator><creator>Abdulsahib, Ghaida Muttashar</creator><creator>Alghamdi, Ans D.</creator><creator>Aldhyani, Theyazn H. H.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0002-7583-6086</orcidid><orcidid>https://orcid.org/0000-0003-1822-1357</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-0354-1297</orcidid><orcidid>https://orcid.org/0000-0002-4750-8384</orcidid><orcidid>https://orcid.org/0000-0003-0446-5430</orcidid></search><sort><creationdate>20220518</creationdate><title>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</title><author>Gnanavel, S. ; Sreekrishna, M. ; Mani, Vinodhini ; Kumaran, G. ; Amshavalli, R. S. ; Alharbi, Sadeen ; Maashi, Mashael ; Khalaf, Osamah Ibrahim ; Abdulsahib, Ghaida Muttashar ; Alghamdi, Ans D. ; Aldhyani, Theyazn H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Communication</topic><topic>Data loss</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Failure</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Hazardous areas</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Technology assessment</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Kumaran, G.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Alharbi, Sadeen</creatorcontrib><creatorcontrib>Maashi, Mashael</creatorcontrib><creatorcontrib>Khalaf, Osamah Ibrahim</creatorcontrib><creatorcontrib>Abdulsahib, Ghaida Muttashar</creatorcontrib><creatorcontrib>Alghamdi, Ans D.</creatorcontrib><creatorcontrib>Aldhyani, Theyazn H. H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanavel, S.</au><au>Sreekrishna, M.</au><au>Mani, Vinodhini</au><au>Kumaran, G.</au><au>Amshavalli, R. S.</au><au>Alharbi, Sadeen</au><au>Maashi, Mashael</au><au>Khalaf, Osamah Ibrahim</au><au>Abdulsahib, Ghaida Muttashar</au><au>Alghamdi, Ans D.</au><au>Aldhyani, Theyazn H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-18</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>1609</spage><pages>1609-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11101609</doi><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0002-7583-6086</orcidid><orcidid>https://orcid.org/0000-0003-1822-1357</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-0354-1297</orcidid><orcidid>https://orcid.org/0000-0002-4750-8384</orcidid><orcidid>https://orcid.org/0000-0003-0446-5430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-05, Vol.11 (10), p.1609
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2670139973
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Artificial intelligence
Artificial neural networks
Classifiers
Communication
Data loss
Data mining
Datasets
Decision making
Deep learning
Failure
Fault detection
Faults
Hazardous areas
Machine learning
Multilayer perceptrons
Neural networks
Nodes
Sensors
Support vector machines
Technology assessment
Wireless networks
Wireless sensor networks
title Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Fault%20Classifiers%20to%20Detect%20the%20Faults%20and%20Node%20Failures%20in%20a%20Wireless%20Sensor%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Gnanavel,%20S.&rft.date=2022-05-18&rft.volume=11&rft.issue=10&rft.spage=1609&rft.pages=1609-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11101609&rft_dat=%3Cproquest_cross%3E2670139973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670139973&rft_id=info:pmid/&rfr_iscdi=true