Loading…
Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network
Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power ava...
Saved in:
Published in: | Electronics (Basel) 2022-05, Vol.11 (10), p.1609 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273 |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273 |
container_end_page | |
container_issue | 10 |
container_start_page | 1609 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Gnanavel, S. Sreekrishna, M. Mani, Vinodhini Kumaran, G. Amshavalli, R. S. Alharbi, Sadeen Maashi, Mashael Khalaf, Osamah Ibrahim Abdulsahib, Ghaida Muttashar Alghamdi, Ans D. Aldhyani, Theyazn H. H. |
description | Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category. |
doi_str_mv | 10.3390/electronics11101609 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670139973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670139973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks93tHEu1KpR6UPG4xPzB1HVTM1mk396t9eDBucwM8-Px5jF2LsUlAIor1zqTU-yCISmlkJXAIzZSosYCFarjP_MpmxBtxFAoYQZixPS80-2OAvHo-VL3beaLVhMFH1winiO_dnnQ5_nNHe7EdWf5Otr9Hto-OeKh45q_hDRYIeKPrqOY-Nrlr5jez9iJ1y25yW8fs-flzdPirlg93N4v5qvCqKnKxbQCfAWUEpVHVLXCqVfgy5nRtbUObOnRgkBXKhDS1K4UEhArDcbbgYcxuzjoblP87B3lZhP7NHxHjarqH7iGgYIDZVIkSs432xQ-dNo1UjT7OJt_4oRv8NhqdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670139973</pqid></control><display><type>article</type><title>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gnanavel, S. ; Sreekrishna, M. ; Mani, Vinodhini ; Kumaran, G. ; Amshavalli, R. S. ; Alharbi, Sadeen ; Maashi, Mashael ; Khalaf, Osamah Ibrahim ; Abdulsahib, Ghaida Muttashar ; Alghamdi, Ans D. ; Aldhyani, Theyazn H. H.</creator><creatorcontrib>Gnanavel, S. ; Sreekrishna, M. ; Mani, Vinodhini ; Kumaran, G. ; Amshavalli, R. S. ; Alharbi, Sadeen ; Maashi, Mashael ; Khalaf, Osamah Ibrahim ; Abdulsahib, Ghaida Muttashar ; Alghamdi, Ans D. ; Aldhyani, Theyazn H. H.</creatorcontrib><description>Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11101609</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Classifiers ; Communication ; Data loss ; Data mining ; Datasets ; Decision making ; Deep learning ; Failure ; Fault detection ; Faults ; Hazardous areas ; Machine learning ; Multilayer perceptrons ; Neural networks ; Nodes ; Sensors ; Support vector machines ; Technology assessment ; Wireless networks ; Wireless sensor networks</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (10), p.1609</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</citedby><cites>FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</cites><orcidid>0000-0003-1246-8762 ; 0000-0002-7583-6086 ; 0000-0003-1822-1357 ; 0000-0003-2344-0482 ; 0000-0002-0354-1297 ; 0000-0002-4750-8384 ; 0000-0003-0446-5430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670139973/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670139973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Kumaran, G.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Alharbi, Sadeen</creatorcontrib><creatorcontrib>Maashi, Mashael</creatorcontrib><creatorcontrib>Khalaf, Osamah Ibrahim</creatorcontrib><creatorcontrib>Abdulsahib, Ghaida Muttashar</creatorcontrib><creatorcontrib>Alghamdi, Ans D.</creatorcontrib><creatorcontrib>Aldhyani, Theyazn H. H.</creatorcontrib><title>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</title><title>Electronics (Basel)</title><description>Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Communication</subject><subject>Data loss</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Failure</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Hazardous areas</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Technology assessment</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE9LAzEQxYMoWGo_gZeA59Uks93tHEu1KpR6UPG4xPzB1HVTM1mk396t9eDBucwM8-Px5jF2LsUlAIor1zqTU-yCISmlkJXAIzZSosYCFarjP_MpmxBtxFAoYQZixPS80-2OAvHo-VL3beaLVhMFH1winiO_dnnQ5_nNHe7EdWf5Otr9Hto-OeKh45q_hDRYIeKPrqOY-Nrlr5jez9iJ1y25yW8fs-flzdPirlg93N4v5qvCqKnKxbQCfAWUEpVHVLXCqVfgy5nRtbUObOnRgkBXKhDS1K4UEhArDcbbgYcxuzjoblP87B3lZhP7NHxHjarqH7iGgYIDZVIkSs432xQ-dNo1UjT7OJt_4oRv8NhqdQ</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Gnanavel, S.</creator><creator>Sreekrishna, M.</creator><creator>Mani, Vinodhini</creator><creator>Kumaran, G.</creator><creator>Amshavalli, R. S.</creator><creator>Alharbi, Sadeen</creator><creator>Maashi, Mashael</creator><creator>Khalaf, Osamah Ibrahim</creator><creator>Abdulsahib, Ghaida Muttashar</creator><creator>Alghamdi, Ans D.</creator><creator>Aldhyani, Theyazn H. H.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0002-7583-6086</orcidid><orcidid>https://orcid.org/0000-0003-1822-1357</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-0354-1297</orcidid><orcidid>https://orcid.org/0000-0002-4750-8384</orcidid><orcidid>https://orcid.org/0000-0003-0446-5430</orcidid></search><sort><creationdate>20220518</creationdate><title>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</title><author>Gnanavel, S. ; Sreekrishna, M. ; Mani, Vinodhini ; Kumaran, G. ; Amshavalli, R. S. ; Alharbi, Sadeen ; Maashi, Mashael ; Khalaf, Osamah Ibrahim ; Abdulsahib, Ghaida Muttashar ; Alghamdi, Ans D. ; Aldhyani, Theyazn H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Communication</topic><topic>Data loss</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Failure</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Hazardous areas</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Technology assessment</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Kumaran, G.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Alharbi, Sadeen</creatorcontrib><creatorcontrib>Maashi, Mashael</creatorcontrib><creatorcontrib>Khalaf, Osamah Ibrahim</creatorcontrib><creatorcontrib>Abdulsahib, Ghaida Muttashar</creatorcontrib><creatorcontrib>Alghamdi, Ans D.</creatorcontrib><creatorcontrib>Aldhyani, Theyazn H. H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanavel, S.</au><au>Sreekrishna, M.</au><au>Mani, Vinodhini</au><au>Kumaran, G.</au><au>Amshavalli, R. S.</au><au>Alharbi, Sadeen</au><au>Maashi, Mashael</au><au>Khalaf, Osamah Ibrahim</au><au>Abdulsahib, Ghaida Muttashar</au><au>Alghamdi, Ans D.</au><au>Aldhyani, Theyazn H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-18</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>1609</spage><pages>1609-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Technology evaluation in the electronics field leads to the great development of Wireless Sensor Networks (WSN) for a variety of applications. The sensor nodes are deployed in hazardous environments, and they are operated by isolated battery sources. Network connectivity is purely based on power availability, which impacts the network lifetime. Hence, power must be used wisely to prolong the network lifetime. The sensor nodes that fail due to power have to detect quickly to maintain the network. In a WSN, classifiers are used to detect the faults for checking the data generated by the sensor nodes. In this paper, six classifiers such as Support Vector Machine, Convolutional Neural Network, Multilayer Perceptron, Stochastic Gradient Descent, Random Forest and Probabilistic Neural Network have been taken for analysis. Six different faults (Offset fault, Gain fault, Stuck-at fault, Out of Bounds, Spike fault and Data loss) are injected in the data generated by the sensor nodes. The faulty data are checked by the classifiers. The simulation results show that the Random Forest detected more faults and it also outperformed all other classifiers in that category.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11101609</doi><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0002-7583-6086</orcidid><orcidid>https://orcid.org/0000-0003-1822-1357</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-0354-1297</orcidid><orcidid>https://orcid.org/0000-0002-4750-8384</orcidid><orcidid>https://orcid.org/0000-0003-0446-5430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-05, Vol.11 (10), p.1609 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2670139973 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Artificial intelligence Artificial neural networks Classifiers Communication Data loss Data mining Datasets Decision making Deep learning Failure Fault detection Faults Hazardous areas Machine learning Multilayer perceptrons Neural networks Nodes Sensors Support vector machines Technology assessment Wireless networks Wireless sensor networks |
title | Analysis of Fault Classifiers to Detect the Faults and Node Failures in a Wireless Sensor Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Fault%20Classifiers%20to%20Detect%20the%20Faults%20and%20Node%20Failures%20in%20a%20Wireless%20Sensor%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Gnanavel,%20S.&rft.date=2022-05-18&rft.volume=11&rft.issue=10&rft.spage=1609&rft.pages=1609-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11101609&rft_dat=%3Cproquest_cross%3E2670139973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-5639b391192f9927295f23f48ca7dde3d4f9d309e42301c7e4013996a3cfd9273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670139973&rft_id=info:pmid/&rfr_iscdi=true |