Loading…
A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient
We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.
Saved in:
Published in: | Differential equations 2022-03, Vol.58 (3), p.367-380 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93 |
container_end_page | 380 |
container_issue | 3 |
container_start_page | 367 |
container_title | Differential equations |
container_volume | 58 |
creator | Fedorov, Yu. S. |
description | We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense. |
doi_str_mv | 10.1134/S0012266122030077 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2670626093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706389473</galeid><sourcerecordid>A706389473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhkVJoU7aB-hN0PMmI2lXWh2NSetAoCFJz4skj2yFteRodylLL32HvmGfpDIOtFCCYASa7_s1MIR8ZHDJmKivHgAY51KWAgJAqTdkwSS0lYBWnJHFsV0d--_I-TA8AYBWrFmQH0t6H3BvYvz989c69BbzSB_nA9K7nGyPe-pTpoY-hLidepP7md4VZMoWN3RlJrebi_gSQa-fJzOGFOn3MO7-scI40xDpuEO6Suh9cAHj-J689aYf8MPLfUG-fb5-XK2r269fblbL28qxhqvKOisUF76FTa2ttNg470EzLkGommslmwa1q20NxrZGay25wdpthJWtN1pckE-n3ENOzxMOY_eUphzLlx2XCmQJ0qJQlydqa3rsQvRpzMaVs8F9cCmiD-V9WXjR6lodBXYSXE7DkNF3hxz2Js8dg-64lO6_pRSHn5yhsHGL-e8or0t_AMSHj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670626093</pqid></control><display><type>article</type><title>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</title><source>Springer Link</source><creator>Fedorov, Yu. S.</creator><creatorcontrib>Fedorov, Yu. S.</creatorcontrib><description>We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266122030077</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Cauchy-Riemann equations ; Difference and Functional Equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Regularization ; Regularization methods</subject><ispartof>Differential equations, 2022-03, Vol.58 (3), p.367-380</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fedorov, Yu. S.</creatorcontrib><title>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.</description><subject>Asymptotic methods</subject><subject>Cauchy-Riemann equations</subject><subject>Difference and Functional Equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Regularization</subject><subject>Regularization methods</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqGzEQhkVJoU7aB-hN0PMmI2lXWh2NSetAoCFJz4skj2yFteRodylLL32HvmGfpDIOtFCCYASa7_s1MIR8ZHDJmKivHgAY51KWAgJAqTdkwSS0lYBWnJHFsV0d--_I-TA8AYBWrFmQH0t6H3BvYvz989c69BbzSB_nA9K7nGyPe-pTpoY-hLidepP7md4VZMoWN3RlJrebi_gSQa-fJzOGFOn3MO7-scI40xDpuEO6Suh9cAHj-J689aYf8MPLfUG-fb5-XK2r269fblbL28qxhqvKOisUF76FTa2ttNg470EzLkGommslmwa1q20NxrZGay25wdpthJWtN1pckE-n3ENOzxMOY_eUphzLlx2XCmQJ0qJQlydqa3rsQvRpzMaVs8F9cCmiD-V9WXjR6lodBXYSXE7DkNF3hxz2Js8dg-64lO6_pRSHn5yhsHGL-e8or0t_AMSHj9A</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Fedorov, Yu. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220301</creationdate><title>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</title><author>Fedorov, Yu. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Cauchy-Riemann equations</topic><topic>Difference and Functional Equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Regularization</topic><topic>Regularization methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorov, Yu. S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorov, Yu. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>367</spage><epage>380</epage><pages>367-380</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266122030077</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2022-03, Vol.58 (3), p.367-380 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2670626093 |
source | Springer Link |
subjects | Asymptotic methods Cauchy-Riemann equations Difference and Functional Equations Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Regularization Regularization methods |
title | A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Riemann%E2%80%93Hilbert%20Type%20Problem%20for%20a%20Singularly%20Perturbed%20Cauchy%E2%80%93Riemann%20Equation%20with%20a%20Singularity%20in%20the%20Coefficient&rft.jtitle=Differential%20equations&rft.au=Fedorov,%20Yu.%20S.&rft.date=2022-03-01&rft.volume=58&rft.issue=3&rft.spage=367&rft.epage=380&rft.pages=367-380&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266122030077&rft_dat=%3Cgale_proqu%3EA706389473%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670626093&rft_id=info:pmid/&rft_galeid=A706389473&rfr_iscdi=true |