Loading…

A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient

We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.

Saved in:
Bibliographic Details
Published in:Differential equations 2022-03, Vol.58 (3), p.367-380
Main Author: Fedorov, Yu. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93
container_end_page 380
container_issue 3
container_start_page 367
container_title Differential equations
container_volume 58
creator Fedorov, Yu. S.
description We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.
doi_str_mv 10.1134/S0012266122030077
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2670626093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706389473</galeid><sourcerecordid>A706389473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhkVJoU7aB-hN0PMmI2lXWh2NSetAoCFJz4skj2yFteRodylLL32HvmGfpDIOtFCCYASa7_s1MIR8ZHDJmKivHgAY51KWAgJAqTdkwSS0lYBWnJHFsV0d--_I-TA8AYBWrFmQH0t6H3BvYvz989c69BbzSB_nA9K7nGyPe-pTpoY-hLidepP7md4VZMoWN3RlJrebi_gSQa-fJzOGFOn3MO7-scI40xDpuEO6Suh9cAHj-J689aYf8MPLfUG-fb5-XK2r269fblbL28qxhqvKOisUF76FTa2ttNg470EzLkGommslmwa1q20NxrZGay25wdpthJWtN1pckE-n3ENOzxMOY_eUphzLlx2XCmQJ0qJQlydqa3rsQvRpzMaVs8F9cCmiD-V9WXjR6lodBXYSXE7DkNF3hxz2Js8dg-64lO6_pRSHn5yhsHGL-e8or0t_AMSHj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670626093</pqid></control><display><type>article</type><title>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</title><source>Springer Link</source><creator>Fedorov, Yu. S.</creator><creatorcontrib>Fedorov, Yu. S.</creatorcontrib><description>We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266122030077</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Cauchy-Riemann equations ; Difference and Functional Equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Regularization ; Regularization methods</subject><ispartof>Differential equations, 2022-03, Vol.58 (3), p.367-380</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fedorov, Yu. S.</creatorcontrib><title>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.</description><subject>Asymptotic methods</subject><subject>Cauchy-Riemann equations</subject><subject>Difference and Functional Equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Regularization</subject><subject>Regularization methods</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqGzEQhkVJoU7aB-hN0PMmI2lXWh2NSetAoCFJz4skj2yFteRodylLL32HvmGfpDIOtFCCYASa7_s1MIR8ZHDJmKivHgAY51KWAgJAqTdkwSS0lYBWnJHFsV0d--_I-TA8AYBWrFmQH0t6H3BvYvz989c69BbzSB_nA9K7nGyPe-pTpoY-hLidepP7md4VZMoWN3RlJrebi_gSQa-fJzOGFOn3MO7-scI40xDpuEO6Suh9cAHj-J689aYf8MPLfUG-fb5-XK2r269fblbL28qxhqvKOisUF76FTa2ttNg470EzLkGommslmwa1q20NxrZGay25wdpthJWtN1pckE-n3ENOzxMOY_eUphzLlx2XCmQJ0qJQlydqa3rsQvRpzMaVs8F9cCmiD-V9WXjR6lodBXYSXE7DkNF3hxz2Js8dg-64lO6_pRSHn5yhsHGL-e8or0t_AMSHj9A</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Fedorov, Yu. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220301</creationdate><title>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</title><author>Fedorov, Yu. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Cauchy-Riemann equations</topic><topic>Difference and Functional Equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Regularization</topic><topic>Regularization methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorov, Yu. S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorov, Yu. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>367</spage><epage>380</epage><pages>367-380</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the Riemann–Hilbert problem for a singularly perturbed system of partial differential equations of the Cauchy–Riemann type. Using the Lomov regularization method, we obtain sufficient conditions under which the asymptotic solutions of the problem converge in the usual sense.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266122030077</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2022-03, Vol.58 (3), p.367-380
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2670626093
source Springer Link
subjects Asymptotic methods
Cauchy-Riemann equations
Difference and Functional Equations
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Regularization
Regularization methods
title A Riemann–Hilbert Type Problem for a Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Coefficient
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Riemann%E2%80%93Hilbert%20Type%20Problem%20for%20a%20Singularly%20Perturbed%20Cauchy%E2%80%93Riemann%20Equation%20with%20a%20Singularity%20in%20the%20Coefficient&rft.jtitle=Differential%20equations&rft.au=Fedorov,%20Yu.%20S.&rft.date=2022-03-01&rft.volume=58&rft.issue=3&rft.spage=367&rft.epage=380&rft.pages=367-380&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266122030077&rft_dat=%3Cgale_proqu%3EA706389473%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1527-bcb3723f80d49b6be5cff091260374297655e9c4b40ab8a99962ae4cd3b68fa93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670626093&rft_id=info:pmid/&rft_galeid=A706389473&rfr_iscdi=true