Loading…

Model for Detecting Globules in Images of Skin Neoplasms

This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts withou...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical models and computer simulations 2022, Vol.14 (3), p.411-418
Main Authors: Nikitaev, V. G., Pronichev, A. N., Tamrazova, O. B., Sergeev, V. Yu, Lim, A. O., Kozlov, V. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3
cites cdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3
container_end_page 418
container_issue 3
container_start_page 411
container_title Mathematical models and computer simulations
container_volume 14
creator Nikitaev, V. G.
Pronichev, A. N.
Tamrazova, O. B.
Sergeev, V. Yu
Lim, A. O.
Kozlov, V. S.
description This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.
doi_str_mv 10.1134/S2070048222030115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670965887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670965887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0S58CuH7F9RAVKpQKHwjlyEjtKSeNipwf-HldFcEDsZWdXM7OrIeQS4RqR8Zs1BQnAFaUUGCCKEzI5rHLgGk5_sKLnZBbjBlIxKhVTE6KefGP7zPmQ3dnR1mM3tNmi99W-tzHrhmy5NW1C3mXr9zQ-W7_rTdzGC3LmTB_t7LtPydvD_ev8MV-9LJbz21VeY4Eib6yx2jCXHnG8EbxA0EpQUZmitthQzl2FgteaawWqZs5JgQiF1Npq2VRsSq6OvrvgP_Y2juXG78OQTpa0kKALoZRMLDyy6uBjDNaVu9BtTfgsEcpDRuWfjJKGHjUxcYfWhl_n_0Vf9VllJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670965887</pqid></control><display><type>article</type><title>Model for Detecting Globules in Images of Skin Neoplasms</title><source>Springer Nature</source><creator>Nikitaev, V. G. ; Pronichev, A. N. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Lim, A. O. ; Kozlov, V. S.</creator><creatorcontrib>Nikitaev, V. G. ; Pronichev, A. N. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Lim, A. O. ; Kozlov, V. S.</creatorcontrib><description>This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048222030115</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adequacy ; Clumps ; Digital imaging ; Globules ; Image contrast ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Neoplasms ; Simulation and Modeling ; Structural members ; Tumors</subject><ispartof>Mathematical models and computer simulations, 2022, Vol.14 (3), p.411-418</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2022, Vol. 14, No. 3, pp. 411–418. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Matematicheskoe Modelirovanie, 2021, Vol. 33, No. 10, pp. 83–95.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</citedby><cites>FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikitaev, V. G.</creatorcontrib><creatorcontrib>Pronichev, A. N.</creatorcontrib><creatorcontrib>Tamrazova, O. B.</creatorcontrib><creatorcontrib>Sergeev, V. Yu</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Kozlov, V. S.</creatorcontrib><title>Model for Detecting Globules in Images of Skin Neoplasms</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.</description><subject>Adequacy</subject><subject>Clumps</subject><subject>Digital imaging</subject><subject>Globules</subject><subject>Image contrast</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neoplasms</subject><subject>Simulation and Modeling</subject><subject>Structural members</subject><subject>Tumors</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0S58CuH7F9RAVKpQKHwjlyEjtKSeNipwf-HldFcEDsZWdXM7OrIeQS4RqR8Zs1BQnAFaUUGCCKEzI5rHLgGk5_sKLnZBbjBlIxKhVTE6KefGP7zPmQ3dnR1mM3tNmi99W-tzHrhmy5NW1C3mXr9zQ-W7_rTdzGC3LmTB_t7LtPydvD_ev8MV-9LJbz21VeY4Eib6yx2jCXHnG8EbxA0EpQUZmitthQzl2FgteaawWqZs5JgQiF1Npq2VRsSq6OvrvgP_Y2juXG78OQTpa0kKALoZRMLDyy6uBjDNaVu9BtTfgsEcpDRuWfjJKGHjUxcYfWhl_n_0Vf9VllJg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nikitaev, V. G.</creator><creator>Pronichev, A. N.</creator><creator>Tamrazova, O. B.</creator><creator>Sergeev, V. Yu</creator><creator>Lim, A. O.</creator><creator>Kozlov, V. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Model for Detecting Globules in Images of Skin Neoplasms</title><author>Nikitaev, V. G. ; Pronichev, A. N. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Lim, A. O. ; Kozlov, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Clumps</topic><topic>Digital imaging</topic><topic>Globules</topic><topic>Image contrast</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neoplasms</topic><topic>Simulation and Modeling</topic><topic>Structural members</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikitaev, V. G.</creatorcontrib><creatorcontrib>Pronichev, A. N.</creatorcontrib><creatorcontrib>Tamrazova, O. B.</creatorcontrib><creatorcontrib>Sergeev, V. Yu</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Kozlov, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikitaev, V. G.</au><au>Pronichev, A. N.</au><au>Tamrazova, O. B.</au><au>Sergeev, V. Yu</au><au>Lim, A. O.</au><au>Kozlov, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for Detecting Globules in Images of Skin Neoplasms</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>411</spage><epage>418</epage><pages>411-418</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048222030115</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0482
ispartof Mathematical models and computer simulations, 2022, Vol.14 (3), p.411-418
issn 2070-0482
2070-0490
language eng
recordid cdi_proquest_journals_2670965887
source Springer Nature
subjects Adequacy
Clumps
Digital imaging
Globules
Image contrast
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neoplasms
Simulation and Modeling
Structural members
Tumors
title Model for Detecting Globules in Images of Skin Neoplasms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20Detecting%20Globules%20in%20Images%20of%20Skin%20Neoplasms&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Nikitaev,%20V.%20G.&rft.date=2022&rft.volume=14&rft.issue=3&rft.spage=411&rft.epage=418&rft.pages=411-418&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048222030115&rft_dat=%3Cproquest_cross%3E2670965887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670965887&rft_id=info:pmid/&rfr_iscdi=true