Loading…
Model for Detecting Globules in Images of Skin Neoplasms
This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts withou...
Saved in:
Published in: | Mathematical models and computer simulations 2022, Vol.14 (3), p.411-418 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3 |
container_end_page | 418 |
container_issue | 3 |
container_start_page | 411 |
container_title | Mathematical models and computer simulations |
container_volume | 14 |
creator | Nikitaev, V. G. Pronichev, A. N. Tamrazova, O. B. Sergeev, V. Yu Lim, A. O. Kozlov, V. S. |
description | This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules. |
doi_str_mv | 10.1134/S2070048222030115 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670965887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670965887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0S58CuH7F9RAVKpQKHwjlyEjtKSeNipwf-HldFcEDsZWdXM7OrIeQS4RqR8Zs1BQnAFaUUGCCKEzI5rHLgGk5_sKLnZBbjBlIxKhVTE6KefGP7zPmQ3dnR1mM3tNmi99W-tzHrhmy5NW1C3mXr9zQ-W7_rTdzGC3LmTB_t7LtPydvD_ev8MV-9LJbz21VeY4Eib6yx2jCXHnG8EbxA0EpQUZmitthQzl2FgteaawWqZs5JgQiF1Npq2VRsSq6OvrvgP_Y2juXG78OQTpa0kKALoZRMLDyy6uBjDNaVu9BtTfgsEcpDRuWfjJKGHjUxcYfWhl_n_0Vf9VllJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670965887</pqid></control><display><type>article</type><title>Model for Detecting Globules in Images of Skin Neoplasms</title><source>Springer Nature</source><creator>Nikitaev, V. G. ; Pronichev, A. N. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Lim, A. O. ; Kozlov, V. S.</creator><creatorcontrib>Nikitaev, V. G. ; Pronichev, A. N. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Lim, A. O. ; Kozlov, V. S.</creatorcontrib><description>This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048222030115</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adequacy ; Clumps ; Digital imaging ; Globules ; Image contrast ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Neoplasms ; Simulation and Modeling ; Structural members ; Tumors</subject><ispartof>Mathematical models and computer simulations, 2022, Vol.14 (3), p.411-418</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2022, Vol. 14, No. 3, pp. 411–418. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Matematicheskoe Modelirovanie, 2021, Vol. 33, No. 10, pp. 83–95.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</citedby><cites>FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikitaev, V. G.</creatorcontrib><creatorcontrib>Pronichev, A. N.</creatorcontrib><creatorcontrib>Tamrazova, O. B.</creatorcontrib><creatorcontrib>Sergeev, V. Yu</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Kozlov, V. S.</creatorcontrib><title>Model for Detecting Globules in Images of Skin Neoplasms</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.</description><subject>Adequacy</subject><subject>Clumps</subject><subject>Digital imaging</subject><subject>Globules</subject><subject>Image contrast</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neoplasms</subject><subject>Simulation and Modeling</subject><subject>Structural members</subject><subject>Tumors</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0S58CuH7F9RAVKpQKHwjlyEjtKSeNipwf-HldFcEDsZWdXM7OrIeQS4RqR8Zs1BQnAFaUUGCCKEzI5rHLgGk5_sKLnZBbjBlIxKhVTE6KefGP7zPmQ3dnR1mM3tNmi99W-tzHrhmy5NW1C3mXr9zQ-W7_rTdzGC3LmTB_t7LtPydvD_ev8MV-9LJbz21VeY4Eib6yx2jCXHnG8EbxA0EpQUZmitthQzl2FgteaawWqZs5JgQiF1Npq2VRsSq6OvrvgP_Y2juXG78OQTpa0kKALoZRMLDyy6uBjDNaVu9BtTfgsEcpDRuWfjJKGHjUxcYfWhl_n_0Vf9VllJg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nikitaev, V. G.</creator><creator>Pronichev, A. N.</creator><creator>Tamrazova, O. B.</creator><creator>Sergeev, V. Yu</creator><creator>Lim, A. O.</creator><creator>Kozlov, V. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Model for Detecting Globules in Images of Skin Neoplasms</title><author>Nikitaev, V. G. ; Pronichev, A. N. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Lim, A. O. ; Kozlov, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Clumps</topic><topic>Digital imaging</topic><topic>Globules</topic><topic>Image contrast</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neoplasms</topic><topic>Simulation and Modeling</topic><topic>Structural members</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikitaev, V. G.</creatorcontrib><creatorcontrib>Pronichev, A. N.</creatorcontrib><creatorcontrib>Tamrazova, O. B.</creatorcontrib><creatorcontrib>Sergeev, V. Yu</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Kozlov, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikitaev, V. G.</au><au>Pronichev, A. N.</au><au>Tamrazova, O. B.</au><au>Sergeev, V. Yu</au><au>Lim, A. O.</au><au>Kozlov, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for Detecting Globules in Images of Skin Neoplasms</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>411</spage><epage>418</epage><pages>411-418</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>This article is devoted to the digital processing of images of skin neoplasms to detect significant structural elements in the diagnosis of melanoma–globules (clumps, lumps). A new processing model is proposed, which makes it possible to stably select globules in images of different contrasts without the need to manually adjust the parameters. The results of the experiment confirming the adequacy of the model are presented. The globule recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2868 globules.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048222030115</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0482 |
ispartof | Mathematical models and computer simulations, 2022, Vol.14 (3), p.411-418 |
issn | 2070-0482 2070-0490 |
language | eng |
recordid | cdi_proquest_journals_2670965887 |
source | Springer Nature |
subjects | Adequacy Clumps Digital imaging Globules Image contrast Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neoplasms Simulation and Modeling Structural members Tumors |
title | Model for Detecting Globules in Images of Skin Neoplasms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20Detecting%20Globules%20in%20Images%20of%20Skin%20Neoplasms&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Nikitaev,%20V.%20G.&rft.date=2022&rft.volume=14&rft.issue=3&rft.spage=411&rft.epage=418&rft.pages=411-418&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048222030115&rft_dat=%3Cproquest_cross%3E2670965887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1615-deae9a3f490f4d5461098525ba6ce1d244fb154c949808c3ff751106799e97db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670965887&rft_id=info:pmid/&rfr_iscdi=true |