Loading…
Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA
This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well bore...
Saved in:
Published in: | Environmental earth sciences 2022-06, Vol.81 (11), Article 317 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Environmental earth sciences |
container_volume | 81 |
creator | Flowers, Michael D. Shimabukuro, David H. Stephens, Michael J. Warden, John G. Gillespie, Janice M. Chang, Will |
description | This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins. |
doi_str_mv | 10.1007/s12665-022-10362-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671098783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671098783</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhSMEEhX0DzBZYm3Aj8SJx6qiBVTRoZTVcuObNpWxWzsBdeKvYwiCjbvch845V_qS5IrgG4JxcRsI5TxPMaUpwYzTNDtJBqTkPOVUiNPfucTnyTCEHY7FCBOYD5KPGTjjNk2FKmdb70xAzqKNd53V76oFj4IyjW3aI_LwBj5uqLHoyfl2iybOQEDzeAe0aAyaNmD0CAXXtVvwFi2VRY9OHbroeFHGwHGEJjGudt42aoRWy_FlclYrE2D40y-S1fTueXKfzhezh8l4nipW8jZludIFpbzQWUlVkQmSC7IudKVFllcVVxUDqAGDwJpUhaBCleuaRhhEM51rdpFc97l77w4dhFbuXOdtfCljKsGiLEoWVbRXVd6F4KGWe9-8Kn-UBMsv1rJnLSNr-c1aZtHEelOIYrsB_xf9j-sTtKmCLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671098783</pqid></control><display><type>article</type><title>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</title><source>Springer Nature</source><creator>Flowers, Michael D. ; Shimabukuro, David H. ; Stephens, Michael J. ; Warden, John G. ; Gillespie, Janice M. ; Chang, Will</creator><creatorcontrib>Flowers, Michael D. ; Shimabukuro, David H. ; Stephens, Michael J. ; Warden, John G. ; Gillespie, Janice M. ; Chang, Will</creatorcontrib><description>This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-022-10362-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alluvial basins ; Biogeosciences ; Boreholes ; Connate water ; Deposition ; Depth ; Dilution ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Evaporation ; Freshwater ; Gas wells ; Geochemistry ; Geology ; Groundwater ; Groundwater data ; Groundwater quality ; Groundwater salinity ; Hydrology/Water Resources ; Inland water environment ; Levees ; Mud flats ; Oil ; Oil and gas fields ; Oil fields ; Oil wells ; Original Article ; Saline water ; Salinity ; Salinity effects ; Sea level ; Seawater ; Sedimentary environments ; Sedimentary facies ; Slopes ; Terrestrial Pollution ; Valleys ; Wastewater ; Water quality</subject><ispartof>Environmental earth sciences, 2022-06, Vol.81 (11), Article 317</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</citedby><cites>FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</cites><orcidid>0000-0001-8995-9928 ; 0000-0003-1667-3472 ; 0000-0003-1384-458X ; 0000-0002-6106-5284 ; 0000-0002-0796-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Flowers, Michael D.</creatorcontrib><creatorcontrib>Shimabukuro, David H.</creatorcontrib><creatorcontrib>Stephens, Michael J.</creatorcontrib><creatorcontrib>Warden, John G.</creatorcontrib><creatorcontrib>Gillespie, Janice M.</creatorcontrib><creatorcontrib>Chang, Will</creatorcontrib><title>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.</description><subject>Alluvial basins</subject><subject>Biogeosciences</subject><subject>Boreholes</subject><subject>Connate water</subject><subject>Deposition</subject><subject>Depth</subject><subject>Dilution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Evaporation</subject><subject>Freshwater</subject><subject>Gas wells</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater quality</subject><subject>Groundwater salinity</subject><subject>Hydrology/Water Resources</subject><subject>Inland water environment</subject><subject>Levees</subject><subject>Mud flats</subject><subject>Oil</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>Oil wells</subject><subject>Original Article</subject><subject>Saline water</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sea level</subject><subject>Seawater</subject><subject>Sedimentary environments</subject><subject>Sedimentary facies</subject><subject>Slopes</subject><subject>Terrestrial Pollution</subject><subject>Valleys</subject><subject>Wastewater</subject><subject>Water quality</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhSMEEhX0DzBZYm3Aj8SJx6qiBVTRoZTVcuObNpWxWzsBdeKvYwiCjbvch845V_qS5IrgG4JxcRsI5TxPMaUpwYzTNDtJBqTkPOVUiNPfucTnyTCEHY7FCBOYD5KPGTjjNk2FKmdb70xAzqKNd53V76oFj4IyjW3aI_LwBj5uqLHoyfl2iybOQEDzeAe0aAyaNmD0CAXXtVvwFi2VRY9OHbroeFHGwHGEJjGudt42aoRWy_FlclYrE2D40y-S1fTueXKfzhezh8l4nipW8jZludIFpbzQWUlVkQmSC7IudKVFllcVVxUDqAGDwJpUhaBCleuaRhhEM51rdpFc97l77w4dhFbuXOdtfCljKsGiLEoWVbRXVd6F4KGWe9-8Kn-UBMsv1rJnLSNr-c1aZtHEelOIYrsB_xf9j-sTtKmCLw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Flowers, Michael D.</creator><creator>Shimabukuro, David H.</creator><creator>Stephens, Michael J.</creator><creator>Warden, John G.</creator><creator>Gillespie, Janice M.</creator><creator>Chang, Will</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8995-9928</orcidid><orcidid>https://orcid.org/0000-0003-1667-3472</orcidid><orcidid>https://orcid.org/0000-0003-1384-458X</orcidid><orcidid>https://orcid.org/0000-0002-6106-5284</orcidid><orcidid>https://orcid.org/0000-0002-0796-0763</orcidid></search><sort><creationdate>20220601</creationdate><title>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</title><author>Flowers, Michael D. ; Shimabukuro, David H. ; Stephens, Michael J. ; Warden, John G. ; Gillespie, Janice M. ; Chang, Will</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alluvial basins</topic><topic>Biogeosciences</topic><topic>Boreholes</topic><topic>Connate water</topic><topic>Deposition</topic><topic>Depth</topic><topic>Dilution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Evaporation</topic><topic>Freshwater</topic><topic>Gas wells</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater quality</topic><topic>Groundwater salinity</topic><topic>Hydrology/Water Resources</topic><topic>Inland water environment</topic><topic>Levees</topic><topic>Mud flats</topic><topic>Oil</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>Oil wells</topic><topic>Original Article</topic><topic>Saline water</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sea level</topic><topic>Seawater</topic><topic>Sedimentary environments</topic><topic>Sedimentary facies</topic><topic>Slopes</topic><topic>Terrestrial Pollution</topic><topic>Valleys</topic><topic>Wastewater</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flowers, Michael D.</creatorcontrib><creatorcontrib>Shimabukuro, David H.</creatorcontrib><creatorcontrib>Stephens, Michael J.</creatorcontrib><creatorcontrib>Warden, John G.</creatorcontrib><creatorcontrib>Gillespie, Janice M.</creatorcontrib><creatorcontrib>Chang, Will</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flowers, Michael D.</au><au>Shimabukuro, David H.</au><au>Stephens, Michael J.</au><au>Warden, John G.</au><au>Gillespie, Janice M.</au><au>Chang, Will</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>81</volume><issue>11</issue><artnum>317</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-022-10362-4</doi><orcidid>https://orcid.org/0000-0001-8995-9928</orcidid><orcidid>https://orcid.org/0000-0003-1667-3472</orcidid><orcidid>https://orcid.org/0000-0003-1384-458X</orcidid><orcidid>https://orcid.org/0000-0002-6106-5284</orcidid><orcidid>https://orcid.org/0000-0002-0796-0763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2022-06, Vol.81 (11), Article 317 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_journals_2671098783 |
source | Springer Nature |
subjects | Alluvial basins Biogeosciences Boreholes Connate water Deposition Depth Dilution Earth and Environmental Science Earth Sciences Environmental Science and Engineering Evaporation Freshwater Gas wells Geochemistry Geology Groundwater Groundwater data Groundwater quality Groundwater salinity Hydrology/Water Resources Inland water environment Levees Mud flats Oil Oil and gas fields Oil fields Oil wells Original Article Saline water Salinity Salinity effects Sea level Seawater Sedimentary environments Sedimentary facies Slopes Terrestrial Pollution Valleys Wastewater Water quality |
title | Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geologic%20controls%20on%20groundwater%20salinity%20reversal%20in%20North%20Coles%20Levee%20Oil%20Field,%20southern%20San%20Joaquin%20Valley,%20California,%20USA&rft.jtitle=Environmental%20earth%20sciences&rft.au=Flowers,%20Michael%20D.&rft.date=2022-06-01&rft.volume=81&rft.issue=11&rft.artnum=317&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-022-10362-4&rft_dat=%3Cproquest_cross%3E2671098783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2671098783&rft_id=info:pmid/&rfr_iscdi=true |