Loading…

Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA

This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well bore...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2022-06, Vol.81 (11), Article 317
Main Authors: Flowers, Michael D., Shimabukuro, David H., Stephens, Michael J., Warden, John G., Gillespie, Janice M., Chang, Will
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3
cites cdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3
container_end_page
container_issue 11
container_start_page
container_title Environmental earth sciences
container_volume 81
creator Flowers, Michael D.
Shimabukuro, David H.
Stephens, Michael J.
Warden, John G.
Gillespie, Janice M.
Chang, Will
description This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.
doi_str_mv 10.1007/s12665-022-10362-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671098783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671098783</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhSMEEhX0DzBZYm3Aj8SJx6qiBVTRoZTVcuObNpWxWzsBdeKvYwiCjbvch845V_qS5IrgG4JxcRsI5TxPMaUpwYzTNDtJBqTkPOVUiNPfucTnyTCEHY7FCBOYD5KPGTjjNk2FKmdb70xAzqKNd53V76oFj4IyjW3aI_LwBj5uqLHoyfl2iybOQEDzeAe0aAyaNmD0CAXXtVvwFi2VRY9OHbroeFHGwHGEJjGudt42aoRWy_FlclYrE2D40y-S1fTueXKfzhezh8l4nipW8jZludIFpbzQWUlVkQmSC7IudKVFllcVVxUDqAGDwJpUhaBCleuaRhhEM51rdpFc97l77w4dhFbuXOdtfCljKsGiLEoWVbRXVd6F4KGWe9-8Kn-UBMsv1rJnLSNr-c1aZtHEelOIYrsB_xf9j-sTtKmCLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671098783</pqid></control><display><type>article</type><title>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</title><source>Springer Nature</source><creator>Flowers, Michael D. ; Shimabukuro, David H. ; Stephens, Michael J. ; Warden, John G. ; Gillespie, Janice M. ; Chang, Will</creator><creatorcontrib>Flowers, Michael D. ; Shimabukuro, David H. ; Stephens, Michael J. ; Warden, John G. ; Gillespie, Janice M. ; Chang, Will</creatorcontrib><description>This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-022-10362-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alluvial basins ; Biogeosciences ; Boreholes ; Connate water ; Deposition ; Depth ; Dilution ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Evaporation ; Freshwater ; Gas wells ; Geochemistry ; Geology ; Groundwater ; Groundwater data ; Groundwater quality ; Groundwater salinity ; Hydrology/Water Resources ; Inland water environment ; Levees ; Mud flats ; Oil ; Oil and gas fields ; Oil fields ; Oil wells ; Original Article ; Saline water ; Salinity ; Salinity effects ; Sea level ; Seawater ; Sedimentary environments ; Sedimentary facies ; Slopes ; Terrestrial Pollution ; Valleys ; Wastewater ; Water quality</subject><ispartof>Environmental earth sciences, 2022-06, Vol.81 (11), Article 317</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</citedby><cites>FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</cites><orcidid>0000-0001-8995-9928 ; 0000-0003-1667-3472 ; 0000-0003-1384-458X ; 0000-0002-6106-5284 ; 0000-0002-0796-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Flowers, Michael D.</creatorcontrib><creatorcontrib>Shimabukuro, David H.</creatorcontrib><creatorcontrib>Stephens, Michael J.</creatorcontrib><creatorcontrib>Warden, John G.</creatorcontrib><creatorcontrib>Gillespie, Janice M.</creatorcontrib><creatorcontrib>Chang, Will</creatorcontrib><title>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.</description><subject>Alluvial basins</subject><subject>Biogeosciences</subject><subject>Boreholes</subject><subject>Connate water</subject><subject>Deposition</subject><subject>Depth</subject><subject>Dilution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Evaporation</subject><subject>Freshwater</subject><subject>Gas wells</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater data</subject><subject>Groundwater quality</subject><subject>Groundwater salinity</subject><subject>Hydrology/Water Resources</subject><subject>Inland water environment</subject><subject>Levees</subject><subject>Mud flats</subject><subject>Oil</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>Oil wells</subject><subject>Original Article</subject><subject>Saline water</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sea level</subject><subject>Seawater</subject><subject>Sedimentary environments</subject><subject>Sedimentary facies</subject><subject>Slopes</subject><subject>Terrestrial Pollution</subject><subject>Valleys</subject><subject>Wastewater</subject><subject>Water quality</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhSMEEhX0DzBZYm3Aj8SJx6qiBVTRoZTVcuObNpWxWzsBdeKvYwiCjbvch845V_qS5IrgG4JxcRsI5TxPMaUpwYzTNDtJBqTkPOVUiNPfucTnyTCEHY7FCBOYD5KPGTjjNk2FKmdb70xAzqKNd53V76oFj4IyjW3aI_LwBj5uqLHoyfl2iybOQEDzeAe0aAyaNmD0CAXXtVvwFi2VRY9OHbroeFHGwHGEJjGudt42aoRWy_FlclYrE2D40y-S1fTueXKfzhezh8l4nipW8jZludIFpbzQWUlVkQmSC7IudKVFllcVVxUDqAGDwJpUhaBCleuaRhhEM51rdpFc97l77w4dhFbuXOdtfCljKsGiLEoWVbRXVd6F4KGWe9-8Kn-UBMsv1rJnLSNr-c1aZtHEelOIYrsB_xf9j-sTtKmCLw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Flowers, Michael D.</creator><creator>Shimabukuro, David H.</creator><creator>Stephens, Michael J.</creator><creator>Warden, John G.</creator><creator>Gillespie, Janice M.</creator><creator>Chang, Will</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8995-9928</orcidid><orcidid>https://orcid.org/0000-0003-1667-3472</orcidid><orcidid>https://orcid.org/0000-0003-1384-458X</orcidid><orcidid>https://orcid.org/0000-0002-6106-5284</orcidid><orcidid>https://orcid.org/0000-0002-0796-0763</orcidid></search><sort><creationdate>20220601</creationdate><title>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</title><author>Flowers, Michael D. ; Shimabukuro, David H. ; Stephens, Michael J. ; Warden, John G. ; Gillespie, Janice M. ; Chang, Will</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alluvial basins</topic><topic>Biogeosciences</topic><topic>Boreholes</topic><topic>Connate water</topic><topic>Deposition</topic><topic>Depth</topic><topic>Dilution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Evaporation</topic><topic>Freshwater</topic><topic>Gas wells</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater data</topic><topic>Groundwater quality</topic><topic>Groundwater salinity</topic><topic>Hydrology/Water Resources</topic><topic>Inland water environment</topic><topic>Levees</topic><topic>Mud flats</topic><topic>Oil</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>Oil wells</topic><topic>Original Article</topic><topic>Saline water</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sea level</topic><topic>Seawater</topic><topic>Sedimentary environments</topic><topic>Sedimentary facies</topic><topic>Slopes</topic><topic>Terrestrial Pollution</topic><topic>Valleys</topic><topic>Wastewater</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flowers, Michael D.</creatorcontrib><creatorcontrib>Shimabukuro, David H.</creatorcontrib><creatorcontrib>Stephens, Michael J.</creatorcontrib><creatorcontrib>Warden, John G.</creatorcontrib><creatorcontrib>Gillespie, Janice M.</creatorcontrib><creatorcontrib>Chang, Will</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flowers, Michael D.</au><au>Shimabukuro, David H.</au><au>Stephens, Michael J.</au><au>Warden, John G.</au><au>Gillespie, Janice M.</au><au>Chang, Will</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>81</volume><issue>11</issue><artnum>317</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>This paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-022-10362-4</doi><orcidid>https://orcid.org/0000-0001-8995-9928</orcidid><orcidid>https://orcid.org/0000-0003-1667-3472</orcidid><orcidid>https://orcid.org/0000-0003-1384-458X</orcidid><orcidid>https://orcid.org/0000-0002-6106-5284</orcidid><orcidid>https://orcid.org/0000-0002-0796-0763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2022-06, Vol.81 (11), Article 317
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2671098783
source Springer Nature
subjects Alluvial basins
Biogeosciences
Boreholes
Connate water
Deposition
Depth
Dilution
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Evaporation
Freshwater
Gas wells
Geochemistry
Geology
Groundwater
Groundwater data
Groundwater quality
Groundwater salinity
Hydrology/Water Resources
Inland water environment
Levees
Mud flats
Oil
Oil and gas fields
Oil fields
Oil wells
Original Article
Saline water
Salinity
Salinity effects
Sea level
Seawater
Sedimentary environments
Sedimentary facies
Slopes
Terrestrial Pollution
Valleys
Wastewater
Water quality
title Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geologic%20controls%20on%20groundwater%20salinity%20reversal%20in%20North%20Coles%20Levee%20Oil%20Field,%20southern%20San%20Joaquin%20Valley,%20California,%20USA&rft.jtitle=Environmental%20earth%20sciences&rft.au=Flowers,%20Michael%20D.&rft.date=2022-06-01&rft.volume=81&rft.issue=11&rft.artnum=317&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-022-10362-4&rft_dat=%3Cproquest_cross%3E2671098783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a386t-35ad72267d482a7491591b7dcd945cc6ac3eefe0e90d1c7929a8bf23621d3d5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2671098783&rft_id=info:pmid/&rfr_iscdi=true