Loading…

Data collection protocols for VANETs: a survey

We live in the era of Intelligent Transport Systems (ITS), which is an extension of Vehicular AdHoc Networks (VANETs). In VANETs, vehicles act as nodes connected with each other and sometimes with a public station. Vehicles continuously exchange and collect information to provide innovative transpor...

Full description

Saved in:
Bibliographic Details
Published in:Complex & intelligent systems 2022-06, Vol.8 (3), p.2593-2622
Main Authors: Gillani, Maryam, Niaz, Hafiz Adnan, Farooq, Muhammad Umar, Ullah, Ata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We live in the era of Intelligent Transport Systems (ITS), which is an extension of Vehicular AdHoc Networks (VANETs). In VANETs, vehicles act as nodes connected with each other and sometimes with a public station. Vehicles continuously exchange and collect information to provide innovative transportation services; for example, traffic management, navigation, autonomous driving, and the generation of alerts. However, VANETs are extremely challenging for data collection, due to their high mobility and dynamic network topologies that cause frequent link disruptions and make path discovery difficult. In this survey, various state-of-the-art data collection protocols for VANETs are discussed, based on three broad categories, i.e., delay-tolerant, best-effort, and real-time protocols. A taxonomy is designed for data collection protocols for VANETs that is essential to add precision and ease of understandability. A detailed comparative analysis among various data collection protocols is provided to highlight their functionalities and features. Protocols are evaluated based on three parametric phases. First, protocols investigation based on six necessary parameters, including delivery and drop ratio, efficiency, and recovery strategy. Second, a 4-D functional framework is designed to fit most data collection protocols for quick classification and mobility model identification, thus eradicating the need to read extensive literature. In the last, in-depth categorical mapping is performed to deep dive for better and targeted interpretation. In addition, some open research challenges for ITS and VANETs are discussed to highlight research gaps. Our work can thus be employed as a quick guide for researchers to identify the technical relevance of data collection protocols of VANETs.
ISSN:2199-4536
2198-6053
DOI:10.1007/s40747-021-00629-x