Loading…

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit a robust fuzzy regression model based on some fuzzy quantities. In this approach, we first introduce a new distance between two fuzzy numbers using the kernel function, and then, based on the least squares method, the parameters of fuzzy regression m...

Full description

Saved in:
Bibliographic Details
Published in:Iranian journal of fuzzy systems (Online) 2020-07, Vol.17 (4), p.105
Main Authors: Khammar, A H, Arefi, M, Akbari, M G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 105
container_title Iranian journal of fuzzy systems (Online)
container_volume 17
creator Khammar, A H
Arefi, M
Akbari, M G
description In this paper, a new approach is presented to fit a robust fuzzy regression model based on some fuzzy quantities. In this approach, we first introduce a new distance between two fuzzy numbers using the kernel function, and then, based on the least squares method, the parameters of fuzzy regression model is estimated. The proposed approach has a suitable performance to present the robust fuzzy model in the presence of different types of outliers. Using some simulated data sets and some real data sets, the application of the proposed approach in modeling some characteristics with outliers, is studied.
doi_str_mv 10.22111/ijfs.2020.5409
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671739761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671739761</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7fe753d1a0ed506d90e0f438abaccbe99e913525edb8ef69660caba62192749a3</originalsourceid><addsrcrecordid>eNotj81LAzEUxIMouNSevQY875rvbI6lWBUKXvRcks2LbF03bbI52L_egF7e8JuBeQxC95R0jFFKH8djyB0jjHRSEHOFGqa0agXn4ho1VHPZEiXFLVrnPDpSjV5SqRq02-AUXckLnsDWm8_FJsg4lMvlByf4rJDHOOPv6GHCzmbwuOIXpLlyKPOw1PgO3QQ7ZVj_6wp97J7ety_t_u35dbvZtyfa86XVAbTknloCXhLlDQESBO-ts8PgwBgwlEsmwbsegjJKkaFmilHDtDCWr9DDX-8pxXOBvByOsaS5vjzUwXWW0YryX8szT64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671739761</pqid></control><display><type>article</type><title>A robust least squares fuzzy regression model based on kernel function</title><source>EZB Electronic Journals Library</source><source>ProQuest Publicly Available Content database</source><creator>Khammar, A H ; Arefi, M ; Akbari, M G</creator><creatorcontrib>Khammar, A H ; Arefi, M ; Akbari, M G</creatorcontrib><description>In this paper, a new approach is presented to fit a robust fuzzy regression model based on some fuzzy quantities. In this approach, we first introduce a new distance between two fuzzy numbers using the kernel function, and then, based on the least squares method, the parameters of fuzzy regression model is estimated. The proposed approach has a suitable performance to present the robust fuzzy model in the presence of different types of outliers. Using some simulated data sets and some real data sets, the application of the proposed approach in modeling some characteristics with outliers, is studied.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2020.5409</identifier><language>eng</language><publisher>Zahedan: University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</publisher><subject>Fuzzy sets ; Numbers ; Performance evaluation ; Regression analysis</subject><ispartof>Iranian journal of fuzzy systems (Online), 2020-07, Vol.17 (4), p.105</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2671739761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Khammar, A H</creatorcontrib><creatorcontrib>Arefi, M</creatorcontrib><creatorcontrib>Akbari, M G</creatorcontrib><title>A robust least squares fuzzy regression model based on kernel function</title><title>Iranian journal of fuzzy systems (Online)</title><description>In this paper, a new approach is presented to fit a robust fuzzy regression model based on some fuzzy quantities. In this approach, we first introduce a new distance between two fuzzy numbers using the kernel function, and then, based on the least squares method, the parameters of fuzzy regression model is estimated. The proposed approach has a suitable performance to present the robust fuzzy model in the presence of different types of outliers. Using some simulated data sets and some real data sets, the application of the proposed approach in modeling some characteristics with outliers, is studied.</description><subject>Fuzzy sets</subject><subject>Numbers</subject><subject>Performance evaluation</subject><subject>Regression analysis</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81LAzEUxIMouNSevQY875rvbI6lWBUKXvRcks2LbF03bbI52L_egF7e8JuBeQxC95R0jFFKH8djyB0jjHRSEHOFGqa0agXn4ho1VHPZEiXFLVrnPDpSjV5SqRq02-AUXckLnsDWm8_FJsg4lMvlByf4rJDHOOPv6GHCzmbwuOIXpLlyKPOw1PgO3QQ7ZVj_6wp97J7ety_t_u35dbvZtyfa86XVAbTknloCXhLlDQESBO-ts8PgwBgwlEsmwbsegjJKkaFmilHDtDCWr9DDX-8pxXOBvByOsaS5vjzUwXWW0YryX8szT64</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Khammar, A H</creator><creator>Arefi, M</creator><creator>Akbari, M G</creator><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200701</creationdate><title>A robust least squares fuzzy regression model based on kernel function</title><author>Khammar, A H ; Arefi, M ; Akbari, M G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7fe753d1a0ed506d90e0f438abaccbe99e913525edb8ef69660caba62192749a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fuzzy sets</topic><topic>Numbers</topic><topic>Performance evaluation</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khammar, A H</creatorcontrib><creatorcontrib>Arefi, M</creatorcontrib><creatorcontrib>Akbari, M G</creatorcontrib><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Iranian journal of fuzzy systems (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khammar, A H</au><au>Arefi, M</au><au>Akbari, M G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust least squares fuzzy regression model based on kernel function</atitle><jtitle>Iranian journal of fuzzy systems (Online)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>17</volume><issue>4</issue><spage>105</spage><pages>105-</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>In this paper, a new approach is presented to fit a robust fuzzy regression model based on some fuzzy quantities. In this approach, we first introduce a new distance between two fuzzy numbers using the kernel function, and then, based on the least squares method, the parameters of fuzzy regression model is estimated. The proposed approach has a suitable performance to present the robust fuzzy model in the presence of different types of outliers. Using some simulated data sets and some real data sets, the application of the proposed approach in modeling some characteristics with outliers, is studied.</abstract><cop>Zahedan</cop><pub>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</pub><doi>10.22111/ijfs.2020.5409</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-0654
ispartof Iranian journal of fuzzy systems (Online), 2020-07, Vol.17 (4), p.105
issn 1735-0654
2676-4334
language eng
recordid cdi_proquest_journals_2671739761
source EZB Electronic Journals Library; ProQuest Publicly Available Content database
subjects Fuzzy sets
Numbers
Performance evaluation
Regression analysis
title A robust least squares fuzzy regression model based on kernel function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20least%20squares%20fuzzy%20regression%20model%20based%20on%20kernel%20function&rft.jtitle=Iranian%20journal%20of%20fuzzy%20systems%20(Online)&rft.au=Khammar,%20A%20H&rft.date=2020-07-01&rft.volume=17&rft.issue=4&rft.spage=105&rft.pages=105-&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2020.5409&rft_dat=%3Cproquest%3E2671739761%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-7fe753d1a0ed506d90e0f438abaccbe99e913525edb8ef69660caba62192749a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2671739761&rft_id=info:pmid/&rfr_iscdi=true