Loading…

Are some species ‘robust’ to exploitation? Explaining persistence in deceptive relationships

Animals and plants trick others in an extraordinary diversity of ways to gain fitness benefits. Mimicry and deception can, for example, lure prey, reduce the costs of parental care or aid in pollination–in ways that impose fitness costs on the exploited party. The evolutionary maintenance of such as...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary ecology 2022-06, Vol.36 (3), p.321-339
Main Authors: Brunton-Martin, Amy L, O’Hanlon, James C, Gaskett, Anne C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Animals and plants trick others in an extraordinary diversity of ways to gain fitness benefits. Mimicry and deception can, for example, lure prey, reduce the costs of parental care or aid in pollination–in ways that impose fitness costs on the exploited party. The evolutionary maintenance of such asymmetric relationships often relies on these costs being mitigated through counter-adaptations, low encounter rates, or indirect fitness benefits. However, these mechanisms do not always explain the evolutionary persistence of some classic deceptive interactions. Sexually deceptive pollination (in which plants trick male pollinators into mating with their flowers) has evolved multiple times independently, mainly in the southern hemisphere and especially in Australasia and Central and South America. This trickery imposes considerable costs on the males: they miss out on mating opportunities, and in some cases, waste their limited sperm on the flower. These relationships appear stable, yet in some cases there is little evidence suggesting that their persistence relies on counter-adaptations, low encounter rates, or indirect fitness benefits. So, how might these relationships persist? Here, we introduce and explore an additional hypothesis from systems biology: that some species are robust to exploitation. Robustness arises from a species’ innate traits and means they are robust against costs of exploitation. This allows species to persist where a population without those traits would not, making them ideal candidates for exploitation. We propose that this mechanism may help inform new research approaches and provide insight into how exploited species might persist.
ISSN:0269-7653
1573-8477
DOI:10.1007/s10682-022-10174-9