Loading…
A Comparison of Statistically Equivalent and Realistic Microstructural Representative Volume Elements for Crystal Plasticity Models
Two methods used to construct a microstructural representative volume element (RVE) were evaluated for their accuracy when used in a crystal plasticity-based finite element (CP-FE) model. The RVE-based CP-FE model has been shown to accurately predict the complete tensile stress–strain response of a...
Saved in:
Published in: | Integrating materials and manufacturing innovation 2022-06, Vol.11 (2), p.214-229 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two methods used to construct a microstructural representative volume element (RVE) were evaluated for their accuracy when used in a crystal plasticity-based finite element (CP-FE) model. The RVE-based CP-FE model has been shown to accurately predict the complete tensile stress–strain response of a Ti–6Al–4V alloy manufactured by laser powder bed fusion. Each method utilized a different image-based technique to create a three-dimensional (3D) RVE from electron backscatter diffraction (EBSD) images. The first method, referred to as the realistic RVE (R-RVE), reconstructed a physical 3D microstructure of the alloy from a series of parallel EBSD images obtained using serial-sectioning (or slicing). The second method captures key information from three orthogonal EBSD images to create a statistically equivalent microstructural RVE (SERVE). Based on the R-RVEs and SERVEs, the CP-FE model was then used to predict the complete tensile stress–strain response of the alloy, including the post-necking damage progression. The accuracy of the predicted stress–strain responses using the R-RVEs and SERVEs was assessed, including the effects of each microstructure descriptor. The results show that the R-RVE and the SERVE offer comparable accuracy for the CP-FE purposes of this study. |
---|---|
ISSN: | 2193-9764 2193-9772 |
DOI: | 10.1007/s40192-022-00257-4 |