Loading…
Detection of Stop Sign Violations From Dashcam Data
In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identify...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2022-06, Vol.23 (6), p.5411-5420 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503 |
container_end_page | 5420 |
container_issue | 6 |
container_start_page | 5411 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Bravi, Luca Kubin, Luca Caprasecca, Stefano de Andrade, Douglas Coimbra Simoncini, Matteo Taccari, Leonardo Sambo, Francesco |
description | In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU. |
doi_str_mv | 10.1109/TITS.2021.3053648 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672088028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340003</ieee_id><sourcerecordid>2672088028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYj-AONlE8-7zrTbpT0aECUh8QB6bUqZ6hKg2C4H_73bQDy9yZv3ZpKPsXuEChH003K2XFQcOFYCpGhqdcEGKKUqAbC5zDOvSw0SrtlNSpverSXigIkJdeS6NuyL4ItFFw7Fov3aF59t2Npsp2Iaw66Y2PTtbNbO3rIrb7eJ7s46ZB_Tl-X4rZy_v87Gz_PScS26Eh1psl7VDWqxGgnhar-SHEg1sPLorNSOFBFXgGBRg_ZrpdacdF5LEEP2eLp7iOHnSKkzm3CM-_6l4c2Ig1LAVZ_CU8rFkFIkbw6x3dn4axBMZmMyG5PZmDObvvNw6rRE9J_XogYAIf4A9K9eFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088028</pqid></control><display><type>article</type><title>Detection of Stop Sign Violations From Dashcam Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bravi, Luca ; Kubin, Luca ; Caprasecca, Stefano ; de Andrade, Douglas Coimbra ; Simoncini, Matteo ; Taccari, Leonardo ; Sambo, Francesco</creator><creatorcontrib>Bravi, Luca ; Kubin, Luca ; Caprasecca, Stefano ; de Andrade, Douglas Coimbra ; Simoncini, Matteo ; Taccari, Leonardo ; Sambo, Francesco</creatorcontrib><description>In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3053648</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Classifiers ; Computing time ; convolutional neural networks ; dashcam ; Detectors ; Feature extraction ; Feature maps ; Global Positioning System ; Global positioning systems ; GPS ; Image classification ; Inertial platforms ; Machine learning ; Pipelines ; Sensors ; Spatial data ; Stop sign violations ; Vehicles ; Video ; Videos ; Violations ; Weather</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-06, Vol.23 (6), p.5411-5420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</citedby><cites>FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</cites><orcidid>0000-0002-7726-5811 ; 0000-0002-1017-646X ; 0000-0001-8058-0620 ; 0000-0003-0800-4893 ; 0000-0001-7128-1792 ; 0000-0001-8981-143X ; 0000-0003-0899-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Bravi, Luca</creatorcontrib><creatorcontrib>Kubin, Luca</creatorcontrib><creatorcontrib>Caprasecca, Stefano</creatorcontrib><creatorcontrib>de Andrade, Douglas Coimbra</creatorcontrib><creatorcontrib>Simoncini, Matteo</creatorcontrib><creatorcontrib>Taccari, Leonardo</creatorcontrib><creatorcontrib>Sambo, Francesco</creatorcontrib><title>Detection of Stop Sign Violations From Dashcam Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Classifiers</subject><subject>Computing time</subject><subject>convolutional neural networks</subject><subject>dashcam</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Image classification</subject><subject>Inertial platforms</subject><subject>Machine learning</subject><subject>Pipelines</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Stop sign violations</subject><subject>Vehicles</subject><subject>Video</subject><subject>Videos</subject><subject>Violations</subject><subject>Weather</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiYj-AONlE8-7zrTbpT0aECUh8QB6bUqZ6hKg2C4H_73bQDy9yZv3ZpKPsXuEChH003K2XFQcOFYCpGhqdcEGKKUqAbC5zDOvSw0SrtlNSpverSXigIkJdeS6NuyL4ItFFw7Fov3aF59t2Npsp2Iaw66Y2PTtbNbO3rIrb7eJ7s46ZB_Tl-X4rZy_v87Gz_PScS26Eh1psl7VDWqxGgnhar-SHEg1sPLorNSOFBFXgGBRg_ZrpdacdF5LEEP2eLp7iOHnSKkzm3CM-_6l4c2Ig1LAVZ_CU8rFkFIkbw6x3dn4axBMZmMyG5PZmDObvvNw6rRE9J_XogYAIf4A9K9eFQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bravi, Luca</creator><creator>Kubin, Luca</creator><creator>Caprasecca, Stefano</creator><creator>de Andrade, Douglas Coimbra</creator><creator>Simoncini, Matteo</creator><creator>Taccari, Leonardo</creator><creator>Sambo, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7726-5811</orcidid><orcidid>https://orcid.org/0000-0002-1017-646X</orcidid><orcidid>https://orcid.org/0000-0001-8058-0620</orcidid><orcidid>https://orcid.org/0000-0003-0800-4893</orcidid><orcidid>https://orcid.org/0000-0001-7128-1792</orcidid><orcidid>https://orcid.org/0000-0001-8981-143X</orcidid><orcidid>https://orcid.org/0000-0003-0899-6976</orcidid></search><sort><creationdate>20220601</creationdate><title>Detection of Stop Sign Violations From Dashcam Data</title><author>Bravi, Luca ; Kubin, Luca ; Caprasecca, Stefano ; de Andrade, Douglas Coimbra ; Simoncini, Matteo ; Taccari, Leonardo ; Sambo, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Classifiers</topic><topic>Computing time</topic><topic>convolutional neural networks</topic><topic>dashcam</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Image classification</topic><topic>Inertial platforms</topic><topic>Machine learning</topic><topic>Pipelines</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Stop sign violations</topic><topic>Vehicles</topic><topic>Video</topic><topic>Videos</topic><topic>Violations</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravi, Luca</creatorcontrib><creatorcontrib>Kubin, Luca</creatorcontrib><creatorcontrib>Caprasecca, Stefano</creatorcontrib><creatorcontrib>de Andrade, Douglas Coimbra</creatorcontrib><creatorcontrib>Simoncini, Matteo</creatorcontrib><creatorcontrib>Taccari, Leonardo</creatorcontrib><creatorcontrib>Sambo, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravi, Luca</au><au>Kubin, Luca</au><au>Caprasecca, Stefano</au><au>de Andrade, Douglas Coimbra</au><au>Simoncini, Matteo</au><au>Taccari, Leonardo</au><au>Sambo, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Stop Sign Violations From Dashcam Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>5411</spage><epage>5420</epage><pages>5411-5420</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3053648</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7726-5811</orcidid><orcidid>https://orcid.org/0000-0002-1017-646X</orcidid><orcidid>https://orcid.org/0000-0001-8058-0620</orcidid><orcidid>https://orcid.org/0000-0003-0800-4893</orcidid><orcidid>https://orcid.org/0000-0001-7128-1792</orcidid><orcidid>https://orcid.org/0000-0001-8981-143X</orcidid><orcidid>https://orcid.org/0000-0003-0899-6976</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-06, Vol.23 (6), p.5411-5420 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2672088028 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Benchmark testing Classifiers Computing time convolutional neural networks dashcam Detectors Feature extraction Feature maps Global Positioning System Global positioning systems GPS Image classification Inertial platforms Machine learning Pipelines Sensors Spatial data Stop sign violations Vehicles Video Videos Violations Weather |
title | Detection of Stop Sign Violations From Dashcam Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Stop%20Sign%20Violations%20From%20Dashcam%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Bravi,%20Luca&rft.date=2022-06-01&rft.volume=23&rft.issue=6&rft.spage=5411&rft.epage=5420&rft.pages=5411-5420&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3053648&rft_dat=%3Cproquest_cross%3E2672088028%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672088028&rft_id=info:pmid/&rft_ieee_id=9340003&rfr_iscdi=true |