Loading…

Detection of Stop Sign Violations From Dashcam Data

In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identify...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2022-06, Vol.23 (6), p.5411-5420
Main Authors: Bravi, Luca, Kubin, Luca, Caprasecca, Stefano, de Andrade, Douglas Coimbra, Simoncini, Matteo, Taccari, Leonardo, Sambo, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503
cites cdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503
container_end_page 5420
container_issue 6
container_start_page 5411
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Bravi, Luca
Kubin, Luca
Caprasecca, Stefano
de Andrade, Douglas Coimbra
Simoncini, Matteo
Taccari, Leonardo
Sambo, Francesco
description In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.
doi_str_mv 10.1109/TITS.2021.3053648
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672088028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340003</ieee_id><sourcerecordid>2672088028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYj-AONlE8-7zrTbpT0aECUh8QB6bUqZ6hKg2C4H_73bQDy9yZv3ZpKPsXuEChH003K2XFQcOFYCpGhqdcEGKKUqAbC5zDOvSw0SrtlNSpverSXigIkJdeS6NuyL4ItFFw7Fov3aF59t2Npsp2Iaw66Y2PTtbNbO3rIrb7eJ7s46ZB_Tl-X4rZy_v87Gz_PScS26Eh1psl7VDWqxGgnhar-SHEg1sPLorNSOFBFXgGBRg_ZrpdacdF5LEEP2eLp7iOHnSKkzm3CM-_6l4c2Ig1LAVZ_CU8rFkFIkbw6x3dn4axBMZmMyG5PZmDObvvNw6rRE9J_XogYAIf4A9K9eFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088028</pqid></control><display><type>article</type><title>Detection of Stop Sign Violations From Dashcam Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bravi, Luca ; Kubin, Luca ; Caprasecca, Stefano ; de Andrade, Douglas Coimbra ; Simoncini, Matteo ; Taccari, Leonardo ; Sambo, Francesco</creator><creatorcontrib>Bravi, Luca ; Kubin, Luca ; Caprasecca, Stefano ; de Andrade, Douglas Coimbra ; Simoncini, Matteo ; Taccari, Leonardo ; Sambo, Francesco</creatorcontrib><description>In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3053648</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Classifiers ; Computing time ; convolutional neural networks ; dashcam ; Detectors ; Feature extraction ; Feature maps ; Global Positioning System ; Global positioning systems ; GPS ; Image classification ; Inertial platforms ; Machine learning ; Pipelines ; Sensors ; Spatial data ; Stop sign violations ; Vehicles ; Video ; Videos ; Violations ; Weather</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-06, Vol.23 (6), p.5411-5420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</citedby><cites>FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</cites><orcidid>0000-0002-7726-5811 ; 0000-0002-1017-646X ; 0000-0001-8058-0620 ; 0000-0003-0800-4893 ; 0000-0001-7128-1792 ; 0000-0001-8981-143X ; 0000-0003-0899-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Bravi, Luca</creatorcontrib><creatorcontrib>Kubin, Luca</creatorcontrib><creatorcontrib>Caprasecca, Stefano</creatorcontrib><creatorcontrib>de Andrade, Douglas Coimbra</creatorcontrib><creatorcontrib>Simoncini, Matteo</creatorcontrib><creatorcontrib>Taccari, Leonardo</creatorcontrib><creatorcontrib>Sambo, Francesco</creatorcontrib><title>Detection of Stop Sign Violations From Dashcam Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Classifiers</subject><subject>Computing time</subject><subject>convolutional neural networks</subject><subject>dashcam</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Image classification</subject><subject>Inertial platforms</subject><subject>Machine learning</subject><subject>Pipelines</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Stop sign violations</subject><subject>Vehicles</subject><subject>Video</subject><subject>Videos</subject><subject>Violations</subject><subject>Weather</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiYj-AONlE8-7zrTbpT0aECUh8QB6bUqZ6hKg2C4H_73bQDy9yZv3ZpKPsXuEChH003K2XFQcOFYCpGhqdcEGKKUqAbC5zDOvSw0SrtlNSpverSXigIkJdeS6NuyL4ItFFw7Fov3aF59t2Npsp2Iaw66Y2PTtbNbO3rIrb7eJ7s46ZB_Tl-X4rZy_v87Gz_PScS26Eh1psl7VDWqxGgnhar-SHEg1sPLorNSOFBFXgGBRg_ZrpdacdF5LEEP2eLp7iOHnSKkzm3CM-_6l4c2Ig1LAVZ_CU8rFkFIkbw6x3dn4axBMZmMyG5PZmDObvvNw6rRE9J_XogYAIf4A9K9eFQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bravi, Luca</creator><creator>Kubin, Luca</creator><creator>Caprasecca, Stefano</creator><creator>de Andrade, Douglas Coimbra</creator><creator>Simoncini, Matteo</creator><creator>Taccari, Leonardo</creator><creator>Sambo, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7726-5811</orcidid><orcidid>https://orcid.org/0000-0002-1017-646X</orcidid><orcidid>https://orcid.org/0000-0001-8058-0620</orcidid><orcidid>https://orcid.org/0000-0003-0800-4893</orcidid><orcidid>https://orcid.org/0000-0001-7128-1792</orcidid><orcidid>https://orcid.org/0000-0001-8981-143X</orcidid><orcidid>https://orcid.org/0000-0003-0899-6976</orcidid></search><sort><creationdate>20220601</creationdate><title>Detection of Stop Sign Violations From Dashcam Data</title><author>Bravi, Luca ; Kubin, Luca ; Caprasecca, Stefano ; de Andrade, Douglas Coimbra ; Simoncini, Matteo ; Taccari, Leonardo ; Sambo, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Classifiers</topic><topic>Computing time</topic><topic>convolutional neural networks</topic><topic>dashcam</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Image classification</topic><topic>Inertial platforms</topic><topic>Machine learning</topic><topic>Pipelines</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Stop sign violations</topic><topic>Vehicles</topic><topic>Video</topic><topic>Videos</topic><topic>Violations</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravi, Luca</creatorcontrib><creatorcontrib>Kubin, Luca</creatorcontrib><creatorcontrib>Caprasecca, Stefano</creatorcontrib><creatorcontrib>de Andrade, Douglas Coimbra</creatorcontrib><creatorcontrib>Simoncini, Matteo</creatorcontrib><creatorcontrib>Taccari, Leonardo</creatorcontrib><creatorcontrib>Sambo, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravi, Luca</au><au>Kubin, Luca</au><au>Caprasecca, Stefano</au><au>de Andrade, Douglas Coimbra</au><au>Simoncini, Matteo</au><au>Taccari, Leonardo</au><au>Sambo, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Stop Sign Violations From Dashcam Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>5411</spage><epage>5420</epage><pages>5411-5420</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this article we present a novel machine learning pipeline for automatic detection of stop sign violations from dashcam videos, Inertial Measurement Units (IMU) and Global Positioning System (GPS) data. We developed a two-step approach, including a detector (Stop Sign Detector) capable of identifying stop signs presence, position, and size within video frames, followed by a classifier (Stop Violation Classifier) that assesses the presence of violations along with a severity score. The Stop Sign Detector is a deep convolutional neural network (CNN) for image classification, which leverages the information contained in its deeper layer feature maps in order to extract estimates of position and size of the detected stop signs. The Stop Violation Classifier fuses the information provided by the Stop Sign Detector with IMU/GPS data to assess the presence and severity of a stop sign violation. The proposed approach has been tested on several thousands of real-world videos, recorded from US vehicles, in all kinds of weather conditions, times of the day and environments. Our method achieves an area under the precision-recall curve of 94% with a required computational time of 2.4 seconds to process a 16-second video entirely on CPU.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3053648</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7726-5811</orcidid><orcidid>https://orcid.org/0000-0002-1017-646X</orcidid><orcidid>https://orcid.org/0000-0001-8058-0620</orcidid><orcidid>https://orcid.org/0000-0003-0800-4893</orcidid><orcidid>https://orcid.org/0000-0001-7128-1792</orcidid><orcidid>https://orcid.org/0000-0001-8981-143X</orcidid><orcidid>https://orcid.org/0000-0003-0899-6976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-06, Vol.23 (6), p.5411-5420
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2672088028
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Benchmark testing
Classifiers
Computing time
convolutional neural networks
dashcam
Detectors
Feature extraction
Feature maps
Global Positioning System
Global positioning systems
GPS
Image classification
Inertial platforms
Machine learning
Pipelines
Sensors
Spatial data
Stop sign violations
Vehicles
Video
Videos
Violations
Weather
title Detection of Stop Sign Violations From Dashcam Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Stop%20Sign%20Violations%20From%20Dashcam%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Bravi,%20Luca&rft.date=2022-06-01&rft.volume=23&rft.issue=6&rft.spage=5411&rft.epage=5420&rft.pages=5411-5420&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3053648&rft_dat=%3Cproquest_cross%3E2672088028%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-1ce9eaf846193b733c4fb520e860bf1ca59ce8ee28010a1909fd88d2e90bf1503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672088028&rft_id=info:pmid/&rft_ieee_id=9340003&rfr_iscdi=true