Loading…

Recent Progress on Nanostructured Transition Metal Oxides As Anode Materials for Lithium-Ion Batteries

Lithium-ion batteries (LIBs) have been broadly utilized in the field of portable electric equipment because of their incredible energy density and long cycling life. In order to overcome the capacity and rate bottlenecks of commercial graphite and further enhance the electrochemical performance of L...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2022-07, Vol.51 (7), p.3391-3417
Main Authors: Zhu, Jiping, Ding, Yuan, Ma, Zeping, Tang, Weihao, Chen, Xiang, Lu, Yingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lithium-ion batteries (LIBs) have been broadly utilized in the field of portable electric equipment because of their incredible energy density and long cycling life. In order to overcome the capacity and rate bottlenecks of commercial graphite and further enhance the electrochemical performance of LIBs, it is vital to develop new electrode materials. Transition metal oxides (TMOs) have emerged as a key type of electrode material for energy storage and conversion application for their low cost, rich abundance and higher specific capacities. However, these materials have low electrical conductivity, poor ionic conductivity and ion diffusion kinetics, large volume expansion, high-voltage hysteresis, and comprehensive structural reorganization that cause poor retention in capacity. Several approaches have been employed to overcome these issues such as preparing nanostructured materials and dispersing metal oxide nanoparticles in a conductive medium such as carbon, reduced graphene oxide, and carbon nanotubes (CNT), which can reduce volume expansion, provide shorter diffusion path length and enhance the contact area. This work briefly introduces the recent progress in TMO-based nanostructure composites as electrode materials for LIBs, and some relevant prospects are also proposed. Graphical Abstract
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-022-09662-z