Loading…

Novel centrality metrics for studying essentiality in protein‐protein interaction networks based on group structures

In this work, we introduce centrality metrics based on group structures, and we show their performance in estimating importance in protein‐protein interaction networks (PPINs). The centrality metrics introduced are extensions of well‐known nodal metrics. However, instead of focusing on a single node...

Full description

Saved in:
Bibliographic Details
Published in:Networks 2022-07, Vol.80 (1), p.3-50
Main Authors: Rasti, Saeid, Vogiatzis, Chrysafis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63
cites cdi_FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63
container_end_page 50
container_issue 1
container_start_page 3
container_title Networks
container_volume 80
creator Rasti, Saeid
Vogiatzis, Chrysafis
description In this work, we introduce centrality metrics based on group structures, and we show their performance in estimating importance in protein‐protein interaction networks (PPINs). The centrality metrics introduced are extensions of well‐known nodal metrics. However, instead of focusing on a single node, we focus on that node and the set of nodes around it. Furthermore, we require the set of nodes to induce a specific pattern or structure. The structures investigated range from the “stricter“ induced stars and cliques, to a “looser” definition of a representative structure. We derive the computational complexity of all metrics and provide mixed integer programming formulations; due to the problem complexity and the size of PPINs, using commercial solvers is not always viable. Hence, we propose a combinatorial branch‐and‐bound solution approach. We conclude by showing the effectiveness of the proposed metrics in identifying essential proteins in Helicobacter pylori and comparing them to nodal metrics.
doi_str_mv 10.1002/net.22071
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672547603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672547603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazuxnSxRVR5SVTZlbaXOpHJJ42I7rbLjCJyRk2BIt6xm9M83_zwQuqVkQglh0xbChDEi6RkaUVLIhJBUnqNRrOVJSjJ-ia683xJCKaf5CB2W9gAN1tAGVzYm9HgHwRntcW0d9qGretNuMHgfCTMQpsV7ZwOY9vvz65RFMYArdTC2xXGJo3XvHq9LDxWOysbZbh_tXKdD58Bfo4u6bDzcnOIYvT3OV7PnZPH69DJ7WCSaFZImmYCS5VpSWNMy5ZJwDRkDLjLGRFXxmhYgRMVIpilPiawLUaWQxwpkRbEW6RjdDb5xzY8OfFBb27k2jlRMSMYzKUgaqfuB0s5676BWe2d2pesVJer3rSpepP7eGtnpwB5NA_3_oFrOV0PHD6P-fSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672547603</pqid></control><display><type>article</type><title>Novel centrality metrics for studying essentiality in protein‐protein interaction networks based on group structures</title><source>Wiley</source><creator>Rasti, Saeid ; Vogiatzis, Chrysafis</creator><creatorcontrib>Rasti, Saeid ; Vogiatzis, Chrysafis</creatorcontrib><description>In this work, we introduce centrality metrics based on group structures, and we show their performance in estimating importance in protein‐protein interaction networks (PPINs). The centrality metrics introduced are extensions of well‐known nodal metrics. However, instead of focusing on a single node, we focus on that node and the set of nodes around it. Furthermore, we require the set of nodes to induce a specific pattern or structure. The structures investigated range from the “stricter“ induced stars and cliques, to a “looser” definition of a representative structure. We derive the computational complexity of all metrics and provide mixed integer programming formulations; due to the problem complexity and the size of PPINs, using commercial solvers is not always viable. Hence, we propose a combinatorial branch‐and‐bound solution approach. We conclude by showing the effectiveness of the proposed metrics in identifying essential proteins in Helicobacter pylori and comparing them to nodal metrics.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.22071</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>biological networks ; centrality ; Combinatorial analysis ; combinatorial branch‐and‐bound ; Complexity ; group centrality ; Integer programming ; Mixed integer ; network structures ; Nodes ; Proteins ; protein‐protein interaction networks</subject><ispartof>Networks, 2022-07, Vol.80 (1), p.3-50</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63</citedby><cites>FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63</cites><orcidid>0000-0003-0787-9380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rasti, Saeid</creatorcontrib><creatorcontrib>Vogiatzis, Chrysafis</creatorcontrib><title>Novel centrality metrics for studying essentiality in protein‐protein interaction networks based on group structures</title><title>Networks</title><description>In this work, we introduce centrality metrics based on group structures, and we show their performance in estimating importance in protein‐protein interaction networks (PPINs). The centrality metrics introduced are extensions of well‐known nodal metrics. However, instead of focusing on a single node, we focus on that node and the set of nodes around it. Furthermore, we require the set of nodes to induce a specific pattern or structure. The structures investigated range from the “stricter“ induced stars and cliques, to a “looser” definition of a representative structure. We derive the computational complexity of all metrics and provide mixed integer programming formulations; due to the problem complexity and the size of PPINs, using commercial solvers is not always viable. Hence, we propose a combinatorial branch‐and‐bound solution approach. We conclude by showing the effectiveness of the proposed metrics in identifying essential proteins in Helicobacter pylori and comparing them to nodal metrics.</description><subject>biological networks</subject><subject>centrality</subject><subject>Combinatorial analysis</subject><subject>combinatorial branch‐and‐bound</subject><subject>Complexity</subject><subject>group centrality</subject><subject>Integer programming</subject><subject>Mixed integer</subject><subject>network structures</subject><subject>Nodes</subject><subject>Proteins</subject><subject>protein‐protein interaction networks</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazuxnSxRVR5SVTZlbaXOpHJJ42I7rbLjCJyRk2BIt6xm9M83_zwQuqVkQglh0xbChDEi6RkaUVLIhJBUnqNRrOVJSjJ-ia683xJCKaf5CB2W9gAN1tAGVzYm9HgHwRntcW0d9qGretNuMHgfCTMQpsV7ZwOY9vvz65RFMYArdTC2xXGJo3XvHq9LDxWOysbZbh_tXKdD58Bfo4u6bDzcnOIYvT3OV7PnZPH69DJ7WCSaFZImmYCS5VpSWNMy5ZJwDRkDLjLGRFXxmhYgRMVIpilPiawLUaWQxwpkRbEW6RjdDb5xzY8OfFBb27k2jlRMSMYzKUgaqfuB0s5676BWe2d2pesVJer3rSpepP7eGtnpwB5NA_3_oFrOV0PHD6P-fSU</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Rasti, Saeid</creator><creator>Vogiatzis, Chrysafis</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0787-9380</orcidid></search><sort><creationdate>202207</creationdate><title>Novel centrality metrics for studying essentiality in protein‐protein interaction networks based on group structures</title><author>Rasti, Saeid ; Vogiatzis, Chrysafis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biological networks</topic><topic>centrality</topic><topic>Combinatorial analysis</topic><topic>combinatorial branch‐and‐bound</topic><topic>Complexity</topic><topic>group centrality</topic><topic>Integer programming</topic><topic>Mixed integer</topic><topic>network structures</topic><topic>Nodes</topic><topic>Proteins</topic><topic>protein‐protein interaction networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasti, Saeid</creatorcontrib><creatorcontrib>Vogiatzis, Chrysafis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasti, Saeid</au><au>Vogiatzis, Chrysafis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel centrality metrics for studying essentiality in protein‐protein interaction networks based on group structures</atitle><jtitle>Networks</jtitle><date>2022-07</date><risdate>2022</risdate><volume>80</volume><issue>1</issue><spage>3</spage><epage>50</epage><pages>3-50</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>In this work, we introduce centrality metrics based on group structures, and we show their performance in estimating importance in protein‐protein interaction networks (PPINs). The centrality metrics introduced are extensions of well‐known nodal metrics. However, instead of focusing on a single node, we focus on that node and the set of nodes around it. Furthermore, we require the set of nodes to induce a specific pattern or structure. The structures investigated range from the “stricter“ induced stars and cliques, to a “looser” definition of a representative structure. We derive the computational complexity of all metrics and provide mixed integer programming formulations; due to the problem complexity and the size of PPINs, using commercial solvers is not always viable. Hence, we propose a combinatorial branch‐and‐bound solution approach. We conclude by showing the effectiveness of the proposed metrics in identifying essential proteins in Helicobacter pylori and comparing them to nodal metrics.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/net.22071</doi><tpages>97</tpages><orcidid>https://orcid.org/0000-0003-0787-9380</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2022-07, Vol.80 (1), p.3-50
issn 0028-3045
1097-0037
language eng
recordid cdi_proquest_journals_2672547603
source Wiley
subjects biological networks
centrality
Combinatorial analysis
combinatorial branch‐and‐bound
Complexity
group centrality
Integer programming
Mixed integer
network structures
Nodes
Proteins
protein‐protein interaction networks
title Novel centrality metrics for studying essentiality in protein‐protein interaction networks based on group structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20centrality%20metrics%20for%20studying%20essentiality%20in%20protein%E2%80%90protein%20interaction%20networks%20based%20on%20group%20structures&rft.jtitle=Networks&rft.au=Rasti,%20Saeid&rft.date=2022-07&rft.volume=80&rft.issue=1&rft.spage=3&rft.epage=50&rft.pages=3-50&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.22071&rft_dat=%3Cproquest_cross%3E2672547603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2971-46ea28c71eb1a35705ce42e564226dd5f19e66d204c15307f96d3e8dd5e499b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672547603&rft_id=info:pmid/&rfr_iscdi=true