Loading…

Physics informed DMD for periodic Dynamic Induction Control of Wind Farms

Dynamic Induction Control (DIC) is a novel, exciting branch of Wind Farm Control. It makes use of time-varying control inputs to increase wake mixing, and consequently improve the velocity recovery rate of the flow and the power production of downstream turbines. The Pulse and the Helix are two prom...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2022-05, Vol.2265 (2), p.22057
Main Authors: Muscari, C, Schito, P, Viré, A, Zasso, A, van der Hoek, D, van Wingerden, JW
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323
cites cdi_FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323
container_end_page
container_issue 2
container_start_page 22057
container_title Journal of physics. Conference series
container_volume 2265
creator Muscari, C
Schito, P
Viré, A
Zasso, A
van der Hoek, D
van Wingerden, JW
description Dynamic Induction Control (DIC) is a novel, exciting branch of Wind Farm Control. It makes use of time-varying control inputs to increase wake mixing, and consequently improve the velocity recovery rate of the flow and the power production of downstream turbines. The Pulse and the Helix are two promising DIC strategies that rely on sinusoidal excitations of the collective pitch and individual pitch of the blades, respectively. While their beneficial effects are evident in simulations and wind tunnel tests, we do not yet fully understand the physics behind them. We perform a systematic analysis of the dynamics of pulsed and helicoidal wakes by applying a data-driven approach to the analysis of data coming from Large Eddy Simulations (LES). Specifically, Dynamic Mode Decomposition (DMD) is used to extract coherent patterns from high-dimensional flow data. The periodicity of the excitation is exploited by adding a novel physics informed step to the algorithm. We then analyze the power spectral density of the resulting DMD modes as a function of the Strouhal number for different pitch excitation frequencies and amplitudes. Finally, we show the evolution in time and space of the dominant modes and comment on the recognizable patterns. By focusing on the modes that contribute the most to the flow dynamics, we gather insight on what causes the increased wake recovery rate in DIC techniques. This knowledge can then be used for the optimization of the signal parameters in complex layouts and conditions.
doi_str_mv 10.1088/1742-6596/2265/2/022057
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672747781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672747781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3wmw-2iS9lM7pZOJAxcuQNglmrE1Nuov9e1sqE0Hw3JwD5znnhQeAS4xuMBIiwTwlM5blLCGEZQlJECEo40dgctgcH2YhTsFZjBuEaF98Apbrj310VYSusT7URsP50xz2I2xNcF67Cs73jar7vmz0ruqcb2Dhmy74LfQWvrtGw4UKdTwHJ1Zto7n47lPwtrh7LR5mq-f7ZXG7mlUppt2MC22NNSURSLGcZpThXFfGiFJhVTKBhM6E0VQTrPIUccqtUoykqsSKaUroFFyNf9vgP3cmdnLjd6HpIyVhnPCUc4F7io9UFXyMwVjZBlersJcYycGbHIzIwY4cvEkiR2_95fV46Xz78_pxXbz8BmWrbQ_TP-D_Ir4AQHB8aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672747781</pqid></control><display><type>article</type><title>Physics informed DMD for periodic Dynamic Induction Control of Wind Farms</title><source>Access via ProQuest (Open Access)</source><source>Free Full-Text Journals in Chemistry</source><creator>Muscari, C ; Schito, P ; Viré, A ; Zasso, A ; van der Hoek, D ; van Wingerden, JW</creator><creatorcontrib>Muscari, C ; Schito, P ; Viré, A ; Zasso, A ; van der Hoek, D ; van Wingerden, JW</creatorcontrib><description>Dynamic Induction Control (DIC) is a novel, exciting branch of Wind Farm Control. It makes use of time-varying control inputs to increase wake mixing, and consequently improve the velocity recovery rate of the flow and the power production of downstream turbines. The Pulse and the Helix are two promising DIC strategies that rely on sinusoidal excitations of the collective pitch and individual pitch of the blades, respectively. While their beneficial effects are evident in simulations and wind tunnel tests, we do not yet fully understand the physics behind them. We perform a systematic analysis of the dynamics of pulsed and helicoidal wakes by applying a data-driven approach to the analysis of data coming from Large Eddy Simulations (LES). Specifically, Dynamic Mode Decomposition (DMD) is used to extract coherent patterns from high-dimensional flow data. The periodicity of the excitation is exploited by adding a novel physics informed step to the algorithm. We then analyze the power spectral density of the resulting DMD modes as a function of the Strouhal number for different pitch excitation frequencies and amplitudes. Finally, we show the evolution in time and space of the dominant modes and comment on the recognizable patterns. By focusing on the modes that contribute the most to the flow dynamics, we gather insight on what causes the increased wake recovery rate in DIC techniques. This knowledge can then be used for the optimization of the signal parameters in complex layouts and conditions.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2265/2/022057</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Excitation ; Large eddy simulation ; Optimization ; Physics ; Power spectral density ; Recovery ; Strouhal number ; Time varying control ; Turbines ; Wind power ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of physics. Conference series, 2022-05, Vol.2265 (2), p.22057</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323</citedby><cites>FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2672747781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Muscari, C</creatorcontrib><creatorcontrib>Schito, P</creatorcontrib><creatorcontrib>Viré, A</creatorcontrib><creatorcontrib>Zasso, A</creatorcontrib><creatorcontrib>van der Hoek, D</creatorcontrib><creatorcontrib>van Wingerden, JW</creatorcontrib><title>Physics informed DMD for periodic Dynamic Induction Control of Wind Farms</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Dynamic Induction Control (DIC) is a novel, exciting branch of Wind Farm Control. It makes use of time-varying control inputs to increase wake mixing, and consequently improve the velocity recovery rate of the flow and the power production of downstream turbines. The Pulse and the Helix are two promising DIC strategies that rely on sinusoidal excitations of the collective pitch and individual pitch of the blades, respectively. While their beneficial effects are evident in simulations and wind tunnel tests, we do not yet fully understand the physics behind them. We perform a systematic analysis of the dynamics of pulsed and helicoidal wakes by applying a data-driven approach to the analysis of data coming from Large Eddy Simulations (LES). Specifically, Dynamic Mode Decomposition (DMD) is used to extract coherent patterns from high-dimensional flow data. The periodicity of the excitation is exploited by adding a novel physics informed step to the algorithm. We then analyze the power spectral density of the resulting DMD modes as a function of the Strouhal number for different pitch excitation frequencies and amplitudes. Finally, we show the evolution in time and space of the dominant modes and comment on the recognizable patterns. By focusing on the modes that contribute the most to the flow dynamics, we gather insight on what causes the increased wake recovery rate in DIC techniques. This knowledge can then be used for the optimization of the signal parameters in complex layouts and conditions.</description><subject>Algorithms</subject><subject>Excitation</subject><subject>Large eddy simulation</subject><subject>Optimization</subject><subject>Physics</subject><subject>Power spectral density</subject><subject>Recovery</subject><subject>Strouhal number</subject><subject>Time varying control</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3wmw-2iS9lM7pZOJAxcuQNglmrE1Nuov9e1sqE0Hw3JwD5znnhQeAS4xuMBIiwTwlM5blLCGEZQlJECEo40dgctgcH2YhTsFZjBuEaF98Apbrj310VYSusT7URsP50xz2I2xNcF67Cs73jar7vmz0ruqcb2Dhmy74LfQWvrtGw4UKdTwHJ1Zto7n47lPwtrh7LR5mq-f7ZXG7mlUppt2MC22NNSURSLGcZpThXFfGiFJhVTKBhM6E0VQTrPIUccqtUoykqsSKaUroFFyNf9vgP3cmdnLjd6HpIyVhnPCUc4F7io9UFXyMwVjZBlersJcYycGbHIzIwY4cvEkiR2_95fV46Xz78_pxXbz8BmWrbQ_TP-D_Ir4AQHB8aA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Muscari, C</creator><creator>Schito, P</creator><creator>Viré, A</creator><creator>Zasso, A</creator><creator>van der Hoek, D</creator><creator>van Wingerden, JW</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220501</creationdate><title>Physics informed DMD for periodic Dynamic Induction Control of Wind Farms</title><author>Muscari, C ; Schito, P ; Viré, A ; Zasso, A ; van der Hoek, D ; van Wingerden, JW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Excitation</topic><topic>Large eddy simulation</topic><topic>Optimization</topic><topic>Physics</topic><topic>Power spectral density</topic><topic>Recovery</topic><topic>Strouhal number</topic><topic>Time varying control</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muscari, C</creatorcontrib><creatorcontrib>Schito, P</creatorcontrib><creatorcontrib>Viré, A</creatorcontrib><creatorcontrib>Zasso, A</creatorcontrib><creatorcontrib>van der Hoek, D</creatorcontrib><creatorcontrib>van Wingerden, JW</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muscari, C</au><au>Schito, P</au><au>Viré, A</au><au>Zasso, A</au><au>van der Hoek, D</au><au>van Wingerden, JW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics informed DMD for periodic Dynamic Induction Control of Wind Farms</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>2265</volume><issue>2</issue><spage>22057</spage><pages>22057-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Dynamic Induction Control (DIC) is a novel, exciting branch of Wind Farm Control. It makes use of time-varying control inputs to increase wake mixing, and consequently improve the velocity recovery rate of the flow and the power production of downstream turbines. The Pulse and the Helix are two promising DIC strategies that rely on sinusoidal excitations of the collective pitch and individual pitch of the blades, respectively. While their beneficial effects are evident in simulations and wind tunnel tests, we do not yet fully understand the physics behind them. We perform a systematic analysis of the dynamics of pulsed and helicoidal wakes by applying a data-driven approach to the analysis of data coming from Large Eddy Simulations (LES). Specifically, Dynamic Mode Decomposition (DMD) is used to extract coherent patterns from high-dimensional flow data. The periodicity of the excitation is exploited by adding a novel physics informed step to the algorithm. We then analyze the power spectral density of the resulting DMD modes as a function of the Strouhal number for different pitch excitation frequencies and amplitudes. Finally, we show the evolution in time and space of the dominant modes and comment on the recognizable patterns. By focusing on the modes that contribute the most to the flow dynamics, we gather insight on what causes the increased wake recovery rate in DIC techniques. This knowledge can then be used for the optimization of the signal parameters in complex layouts and conditions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2265/2/022057</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-05, Vol.2265 (2), p.22057
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2672747781
source Access via ProQuest (Open Access); Free Full-Text Journals in Chemistry
subjects Algorithms
Excitation
Large eddy simulation
Optimization
Physics
Power spectral density
Recovery
Strouhal number
Time varying control
Turbines
Wind power
Wind tunnel testing
Wind tunnels
title Physics informed DMD for periodic Dynamic Induction Control of Wind Farms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics%20informed%20DMD%20for%20periodic%20Dynamic%20Induction%20Control%20of%20Wind%20Farms&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Muscari,%20C&rft.date=2022-05-01&rft.volume=2265&rft.issue=2&rft.spage=22057&rft.pages=22057-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2265/2/022057&rft_dat=%3Cproquest_cross%3E2672747781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-78dfefeb280a69353619dcee8ba1ab6808d58ed3d21a940737faa624ab1a6d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672747781&rft_id=info:pmid/&rfr_iscdi=true