Loading…
Comparison of a mid-fidelity free vortex wake method to a high-fidelity actuator line model large eddy simulation for wind turbine wake simulations
The need for mid-fidelity wind turbine simulations is increasing due to their balance of accuracy and computational efficiency. A common form of mid-fidelity code is the free wake vortex method (FVWM), but these are known to inaccurately represent the far-wake depending on their implementation. Here...
Saved in:
Published in: | Journal of physics. Conference series 2022-05, Vol.2265 (4), p.42044 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The need for mid-fidelity wind turbine simulations is increasing due to their balance of accuracy and computational efficiency. A common form of mid-fidelity code is the free wake vortex method (FVWM), but these are known to inaccurately represent the far-wake depending on their implementation. Herein, we compare CACTUS, a FVWM code, to Nalu-Wind, an actuator line model large eddy simulation (ALM-LES) code with particular focus on the far wake. Specifically, we compare one CACTUS simulation, which necessarily has steady and uniform inflow, to three Nalu-Wind simulations using a steady and uniform inflow, a low turbulence inflow, and a high turbulence inflow. The comparison reveals interesting parallels between CACTUS and all Nalu-Wind cases, but ultimately demonstrates that CACTUS is not an appropriate tool for the simulation of the far-wake of a wind turbine. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2265/4/042044 |