Loading…
AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles
Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experi...
Saved in:
Published in: | Journal of sensors 2022-05, Vol.2022, p.1-14 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | Journal of sensors |
container_volume | 2022 |
creator | Tariq, Hira Javed, Muhammad Awais Alvi, Ahmad Naseem Hasanat, Mozaherul Hoque Abul Khan, Muhammad Badruddin Saudagar, Abdul Khader Jilani Alkhathami, Mohammed |
description | Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption. |
doi_str_mv | 10.1155/2022/4173346 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673228946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673228946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</originalsourceid><addsrcrecordid>eNp90E1PAjEQBuDGaCKiN39AE4-60u_uHpEsSkLiRY23ZtttoQRabJcQ_r1LIB69zMzhyczkBeAeo2eMOR8RRMiIYUkpExdggEUpC0lEefk38-9rcJPzCiFBezYAL-NZUYdGr20L62DT4lDUznnjbejgNC7gJG62u86HBXQxwVnobAq2g9HBL7v0Zm3zLbhyzTrbu3Mfgs9p_TF5K-bvr7PJeF6Y_p-usJwyrttGM6YrQjXVmDPnEMGVqFxrJcelLKVp-0oMKy1lSGhWMcJ4WxlGh-DhtHeb4s_O5k6t4i6F_qQiQlJCyoqJXj2dlEkx52Sd2ia_adJBYaSOKaljSuqcUs8fT3zpQ9vs_f_6F7kHZFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673228946</pqid></control><display><type>article</type><title>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Tariq, Hira ; Javed, Muhammad Awais ; Alvi, Ahmad Naseem ; Hasanat, Mozaherul Hoque Abul ; Khan, Muhammad Badruddin ; Saudagar, Abdul Khader Jilani ; Alkhathami, Mohammed</creator><contributor>Wang, Han</contributor><creatorcontrib>Tariq, Hira ; Javed, Muhammad Awais ; Alvi, Ahmad Naseem ; Hasanat, Mozaherul Hoque Abul ; Khan, Muhammad Badruddin ; Saudagar, Abdul Khader Jilani ; Alkhathami, Mohammed ; Wang, Han</creatorcontrib><description>Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/4173346</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Cloud computing ; Communication ; Computation offloading ; Electric vehicles ; Electronic devices ; Energy consumption ; Energy efficiency ; Greedy algorithms ; Internet ; Internet of Things ; Internet of Vehicles ; Iterative algorithms ; Iterative methods ; Markov analysis ; Markov processes ; Optimization ; Power ; Smart sensors ; Traffic congestion ; Traffic safety</subject><ispartof>Journal of sensors, 2022-05, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Hira Tariq et al.</rights><rights>Copyright © 2022 Hira Tariq et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</citedby><cites>FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</cites><orcidid>0000-0001-7948-6266 ; 0000-0003-4205-3621 ; 0000-0001-5816-097X ; 0000-0002-7771-9115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2673228946/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2673228946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Wang, Han</contributor><creatorcontrib>Tariq, Hira</creatorcontrib><creatorcontrib>Javed, Muhammad Awais</creatorcontrib><creatorcontrib>Alvi, Ahmad Naseem</creatorcontrib><creatorcontrib>Hasanat, Mozaherul Hoque Abul</creatorcontrib><creatorcontrib>Khan, Muhammad Badruddin</creatorcontrib><creatorcontrib>Saudagar, Abdul Khader Jilani</creatorcontrib><creatorcontrib>Alkhathami, Mohammed</creatorcontrib><title>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</title><title>Journal of sensors</title><description>Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Greedy algorithms</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Power</subject><subject>Smart sensors</subject><subject>Traffic congestion</subject><subject>Traffic safety</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90E1PAjEQBuDGaCKiN39AE4-60u_uHpEsSkLiRY23ZtttoQRabJcQ_r1LIB69zMzhyczkBeAeo2eMOR8RRMiIYUkpExdggEUpC0lEefk38-9rcJPzCiFBezYAL-NZUYdGr20L62DT4lDUznnjbejgNC7gJG62u86HBXQxwVnobAq2g9HBL7v0Zm3zLbhyzTrbu3Mfgs9p_TF5K-bvr7PJeF6Y_p-usJwyrttGM6YrQjXVmDPnEMGVqFxrJcelLKVp-0oMKy1lSGhWMcJ4WxlGh-DhtHeb4s_O5k6t4i6F_qQiQlJCyoqJXj2dlEkx52Sd2ia_adJBYaSOKaljSuqcUs8fT3zpQ9vs_f_6F7kHZFM</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Tariq, Hira</creator><creator>Javed, Muhammad Awais</creator><creator>Alvi, Ahmad Naseem</creator><creator>Hasanat, Mozaherul Hoque Abul</creator><creator>Khan, Muhammad Badruddin</creator><creator>Saudagar, Abdul Khader Jilani</creator><creator>Alkhathami, Mohammed</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7948-6266</orcidid><orcidid>https://orcid.org/0000-0003-4205-3621</orcidid><orcidid>https://orcid.org/0000-0001-5816-097X</orcidid><orcidid>https://orcid.org/0000-0002-7771-9115</orcidid></search><sort><creationdate>20220526</creationdate><title>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</title><author>Tariq, Hira ; Javed, Muhammad Awais ; Alvi, Ahmad Naseem ; Hasanat, Mozaherul Hoque Abul ; Khan, Muhammad Badruddin ; Saudagar, Abdul Khader Jilani ; Alkhathami, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Greedy algorithms</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Power</topic><topic>Smart sensors</topic><topic>Traffic congestion</topic><topic>Traffic safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tariq, Hira</creatorcontrib><creatorcontrib>Javed, Muhammad Awais</creatorcontrib><creatorcontrib>Alvi, Ahmad Naseem</creatorcontrib><creatorcontrib>Hasanat, Mozaherul Hoque Abul</creatorcontrib><creatorcontrib>Khan, Muhammad Badruddin</creatorcontrib><creatorcontrib>Saudagar, Abdul Khader Jilani</creatorcontrib><creatorcontrib>Alkhathami, Mohammed</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tariq, Hira</au><au>Javed, Muhammad Awais</au><au>Alvi, Ahmad Naseem</au><au>Hasanat, Mozaherul Hoque Abul</au><au>Khan, Muhammad Badruddin</au><au>Saudagar, Abdul Khader Jilani</au><au>Alkhathami, Mohammed</au><au>Wang, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</atitle><jtitle>Journal of sensors</jtitle><date>2022-05-26</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4173346</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7948-6266</orcidid><orcidid>https://orcid.org/0000-0003-4205-3621</orcidid><orcidid>https://orcid.org/0000-0001-5816-097X</orcidid><orcidid>https://orcid.org/0000-0002-7771-9115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2022-05, Vol.2022, p.1-14 |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2673228946 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Algorithms Cloud computing Communication Computation offloading Electric vehicles Electronic devices Energy consumption Energy efficiency Greedy algorithms Internet Internet of Things Internet of Vehicles Iterative algorithms Iterative methods Markov analysis Markov processes Optimization Power Smart sensors Traffic congestion Traffic safety |
title | AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Enabled%20Energy-Efficient%20Fog%20Computing%20for%20Internet%20of%20Vehicles&rft.jtitle=Journal%20of%20sensors&rft.au=Tariq,%20Hira&rft.date=2022-05-26&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/4173346&rft_dat=%3Cproquest_cross%3E2673228946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2673228946&rft_id=info:pmid/&rfr_iscdi=true |