Loading…

AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles

Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2022-05, Vol.2022, p.1-14
Main Authors: Tariq, Hira, Javed, Muhammad Awais, Alvi, Ahmad Naseem, Hasanat, Mozaherul Hoque Abul, Khan, Muhammad Badruddin, Saudagar, Abdul Khader Jilani, Alkhathami, Mohammed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43
cites cdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43
container_end_page 14
container_issue
container_start_page 1
container_title Journal of sensors
container_volume 2022
creator Tariq, Hira
Javed, Muhammad Awais
Alvi, Ahmad Naseem
Hasanat, Mozaherul Hoque Abul
Khan, Muhammad Badruddin
Saudagar, Abdul Khader Jilani
Alkhathami, Mohammed
description Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.
doi_str_mv 10.1155/2022/4173346
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673228946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673228946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</originalsourceid><addsrcrecordid>eNp90E1PAjEQBuDGaCKiN39AE4-60u_uHpEsSkLiRY23ZtttoQRabJcQ_r1LIB69zMzhyczkBeAeo2eMOR8RRMiIYUkpExdggEUpC0lEefk38-9rcJPzCiFBezYAL-NZUYdGr20L62DT4lDUznnjbejgNC7gJG62u86HBXQxwVnobAq2g9HBL7v0Zm3zLbhyzTrbu3Mfgs9p_TF5K-bvr7PJeF6Y_p-usJwyrttGM6YrQjXVmDPnEMGVqFxrJcelLKVp-0oMKy1lSGhWMcJ4WxlGh-DhtHeb4s_O5k6t4i6F_qQiQlJCyoqJXj2dlEkx52Sd2ia_adJBYaSOKaljSuqcUs8fT3zpQ9vs_f_6F7kHZFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673228946</pqid></control><display><type>article</type><title>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Tariq, Hira ; Javed, Muhammad Awais ; Alvi, Ahmad Naseem ; Hasanat, Mozaherul Hoque Abul ; Khan, Muhammad Badruddin ; Saudagar, Abdul Khader Jilani ; Alkhathami, Mohammed</creator><contributor>Wang, Han</contributor><creatorcontrib>Tariq, Hira ; Javed, Muhammad Awais ; Alvi, Ahmad Naseem ; Hasanat, Mozaherul Hoque Abul ; Khan, Muhammad Badruddin ; Saudagar, Abdul Khader Jilani ; Alkhathami, Mohammed ; Wang, Han</creatorcontrib><description>Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/4173346</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Cloud computing ; Communication ; Computation offloading ; Electric vehicles ; Electronic devices ; Energy consumption ; Energy efficiency ; Greedy algorithms ; Internet ; Internet of Things ; Internet of Vehicles ; Iterative algorithms ; Iterative methods ; Markov analysis ; Markov processes ; Optimization ; Power ; Smart sensors ; Traffic congestion ; Traffic safety</subject><ispartof>Journal of sensors, 2022-05, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Hira Tariq et al.</rights><rights>Copyright © 2022 Hira Tariq et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</citedby><cites>FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</cites><orcidid>0000-0001-7948-6266 ; 0000-0003-4205-3621 ; 0000-0001-5816-097X ; 0000-0002-7771-9115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2673228946/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2673228946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Wang, Han</contributor><creatorcontrib>Tariq, Hira</creatorcontrib><creatorcontrib>Javed, Muhammad Awais</creatorcontrib><creatorcontrib>Alvi, Ahmad Naseem</creatorcontrib><creatorcontrib>Hasanat, Mozaherul Hoque Abul</creatorcontrib><creatorcontrib>Khan, Muhammad Badruddin</creatorcontrib><creatorcontrib>Saudagar, Abdul Khader Jilani</creatorcontrib><creatorcontrib>Alkhathami, Mohammed</creatorcontrib><title>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</title><title>Journal of sensors</title><description>Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Greedy algorithms</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Power</subject><subject>Smart sensors</subject><subject>Traffic congestion</subject><subject>Traffic safety</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90E1PAjEQBuDGaCKiN39AE4-60u_uHpEsSkLiRY23ZtttoQRabJcQ_r1LIB69zMzhyczkBeAeo2eMOR8RRMiIYUkpExdggEUpC0lEefk38-9rcJPzCiFBezYAL-NZUYdGr20L62DT4lDUznnjbejgNC7gJG62u86HBXQxwVnobAq2g9HBL7v0Zm3zLbhyzTrbu3Mfgs9p_TF5K-bvr7PJeF6Y_p-usJwyrttGM6YrQjXVmDPnEMGVqFxrJcelLKVp-0oMKy1lSGhWMcJ4WxlGh-DhtHeb4s_O5k6t4i6F_qQiQlJCyoqJXj2dlEkx52Sd2ia_adJBYaSOKaljSuqcUs8fT3zpQ9vs_f_6F7kHZFM</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Tariq, Hira</creator><creator>Javed, Muhammad Awais</creator><creator>Alvi, Ahmad Naseem</creator><creator>Hasanat, Mozaherul Hoque Abul</creator><creator>Khan, Muhammad Badruddin</creator><creator>Saudagar, Abdul Khader Jilani</creator><creator>Alkhathami, Mohammed</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7948-6266</orcidid><orcidid>https://orcid.org/0000-0003-4205-3621</orcidid><orcidid>https://orcid.org/0000-0001-5816-097X</orcidid><orcidid>https://orcid.org/0000-0002-7771-9115</orcidid></search><sort><creationdate>20220526</creationdate><title>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</title><author>Tariq, Hira ; Javed, Muhammad Awais ; Alvi, Ahmad Naseem ; Hasanat, Mozaherul Hoque Abul ; Khan, Muhammad Badruddin ; Saudagar, Abdul Khader Jilani ; Alkhathami, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Greedy algorithms</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Power</topic><topic>Smart sensors</topic><topic>Traffic congestion</topic><topic>Traffic safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tariq, Hira</creatorcontrib><creatorcontrib>Javed, Muhammad Awais</creatorcontrib><creatorcontrib>Alvi, Ahmad Naseem</creatorcontrib><creatorcontrib>Hasanat, Mozaherul Hoque Abul</creatorcontrib><creatorcontrib>Khan, Muhammad Badruddin</creatorcontrib><creatorcontrib>Saudagar, Abdul Khader Jilani</creatorcontrib><creatorcontrib>Alkhathami, Mohammed</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tariq, Hira</au><au>Javed, Muhammad Awais</au><au>Alvi, Ahmad Naseem</au><au>Hasanat, Mozaherul Hoque Abul</au><au>Khan, Muhammad Badruddin</au><au>Saudagar, Abdul Khader Jilani</au><au>Alkhathami, Mohammed</au><au>Wang, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles</atitle><jtitle>Journal of sensors</jtitle><date>2022-05-26</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4173346</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7948-6266</orcidid><orcidid>https://orcid.org/0000-0003-4205-3621</orcidid><orcidid>https://orcid.org/0000-0001-5816-097X</orcidid><orcidid>https://orcid.org/0000-0002-7771-9115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2022-05, Vol.2022, p.1-14
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2673228946
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Algorithms
Cloud computing
Communication
Computation offloading
Electric vehicles
Electronic devices
Energy consumption
Energy efficiency
Greedy algorithms
Internet
Internet of Things
Internet of Vehicles
Iterative algorithms
Iterative methods
Markov analysis
Markov processes
Optimization
Power
Smart sensors
Traffic congestion
Traffic safety
title AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Enabled%20Energy-Efficient%20Fog%20Computing%20for%20Internet%20of%20Vehicles&rft.jtitle=Journal%20of%20sensors&rft.au=Tariq,%20Hira&rft.date=2022-05-26&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/4173346&rft_dat=%3Cproquest_cross%3E2673228946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-e5345bdab44b923b3b154ff021969fde7518787cd8782c48e3406b494245d9c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2673228946&rft_id=info:pmid/&rfr_iscdi=true