Loading…

Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses

Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functi...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2022-06, Vol.15 (6), p.5418-5424
Main Authors: Li, Na, He, Congli, Wang, Qinqin, Tang, Jianshi, Zhang, Qingtian, Shen, Cheng, Tang, Jian, Huang, Heyi, Wang, Shuopei, Li, Jiawei, Huang, Biying, Wei, Zheng, Guo, Yutuo, Yuan, Jiahao, Yang, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83
cites cdi_FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83
container_end_page 5424
container_issue 6
container_start_page 5418
container_title Nano research
container_volume 15
creator Li, Na
He, Congli
Wang, Qinqin
Tang, Jianshi
Zhang, Qingtian
Shen, Cheng
Tang, Jian
Huang, Heyi
Wang, Shuopei
Li, Jiawei
Huang, Biying
Wei, Zheng
Guo, Yutuo
Yuan, Jiahao
Yang, Wei
Yang, Rong
Shi, Dongxia
Zhang, Guangyu
description Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS 2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS 2 -based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS 2 -based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS 2 -based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.
doi_str_mv 10.1007/s12274-022-4122-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673243782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673243782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczT_ups9StEqVDyo55DNTuqW7WZNUrH99Kas4sm5zOPx3gz8ELpk9JpRWt5ExnkpCeWcyCzJ_ghNWFUpQvMc_2rG5Sk6i3FNacGZVBO0WpgEJG17U3eAOxNWQKI1WbsOvtqDufG978wOAn7yLxw38NlaiNj5gId3n3wDCWzyIWLTN9gPyUOXjeD71uK4680QIZ6jE2e6CBc_e4re7u9e5w9k-bx4nN8uiRWsSMRVzrmaiZmaucrSCqRpmClKWyhXVVzNrLSulg2ruQEhmHSq5kwUomG2kKDEFF2Nd4fgP7YQk177bejzS82LUnApSsVzio0pG3yMAZweQrsxYacZ1QeeeuSpM0994Kn3ucPHTszZfgXh7_L_pW_RRHrB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673243782</pqid></control><display><type>article</type><title>Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses</title><source>Springer Nature</source><creator>Li, Na ; He, Congli ; Wang, Qinqin ; Tang, Jianshi ; Zhang, Qingtian ; Shen, Cheng ; Tang, Jian ; Huang, Heyi ; Wang, Shuopei ; Li, Jiawei ; Huang, Biying ; Wei, Zheng ; Guo, Yutuo ; Yuan, Jiahao ; Yang, Wei ; Yang, Rong ; Shi, Dongxia ; Zhang, Guangyu</creator><creatorcontrib>Li, Na ; He, Congli ; Wang, Qinqin ; Tang, Jianshi ; Zhang, Qingtian ; Shen, Cheng ; Tang, Jian ; Huang, Heyi ; Wang, Shuopei ; Li, Jiawei ; Huang, Biying ; Wei, Zheng ; Guo, Yutuo ; Yuan, Jiahao ; Yang, Wei ; Yang, Rong ; Shi, Dongxia ; Zhang, Guangyu</creatorcontrib><description>Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS 2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS 2 -based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS 2 -based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS 2 -based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4122-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Artificial neural networks ; Associative learning ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Classical conditioning ; Communications systems ; Condensed Matter Physics ; Learning ; Learning behavior ; Light effects ; Long term memory ; Long-term depression ; Long-term potentiation ; Materials Science ; Mimicry ; Molybdenum disulfide ; Monolayers ; Nanotechnology ; Neural networks ; Neuromorphic computing ; Optical communication ; Optoelectronic devices ; Paired-pulse facilitation ; Photometers ; Research Article ; Short term memory ; Synapses ; Visible spectrum ; Visual perception ; Voltage pulses</subject><ispartof>Nano research, 2022-06, Vol.15 (6), p.5418-5424</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83</citedby><cites>FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>He, Congli</creatorcontrib><creatorcontrib>Wang, Qinqin</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Huang, Heyi</creatorcontrib><creatorcontrib>Wang, Shuopei</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Huang, Biying</creatorcontrib><creatorcontrib>Wei, Zheng</creatorcontrib><creatorcontrib>Guo, Yutuo</creatorcontrib><creatorcontrib>Yuan, Jiahao</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><title>Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS 2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS 2 -based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS 2 -based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS 2 -based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.</description><subject>Artificial neural networks</subject><subject>Associative learning</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Classical conditioning</subject><subject>Communications systems</subject><subject>Condensed Matter Physics</subject><subject>Learning</subject><subject>Learning behavior</subject><subject>Light effects</subject><subject>Long term memory</subject><subject>Long-term depression</subject><subject>Long-term potentiation</subject><subject>Materials Science</subject><subject>Mimicry</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>Optical communication</subject><subject>Optoelectronic devices</subject><subject>Paired-pulse facilitation</subject><subject>Photometers</subject><subject>Research Article</subject><subject>Short term memory</subject><subject>Synapses</subject><subject>Visible spectrum</subject><subject>Visual perception</subject><subject>Voltage pulses</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczT_ups9StEqVDyo55DNTuqW7WZNUrH99Kas4sm5zOPx3gz8ELpk9JpRWt5ExnkpCeWcyCzJ_ghNWFUpQvMc_2rG5Sk6i3FNacGZVBO0WpgEJG17U3eAOxNWQKI1WbsOvtqDufG978wOAn7yLxw38NlaiNj5gId3n3wDCWzyIWLTN9gPyUOXjeD71uK4680QIZ6jE2e6CBc_e4re7u9e5w9k-bx4nN8uiRWsSMRVzrmaiZmaucrSCqRpmClKWyhXVVzNrLSulg2ruQEhmHSq5kwUomG2kKDEFF2Nd4fgP7YQk177bejzS82LUnApSsVzio0pG3yMAZweQrsxYacZ1QeeeuSpM0994Kn3ucPHTszZfgXh7_L_pW_RRHrB</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Li, Na</creator><creator>He, Congli</creator><creator>Wang, Qinqin</creator><creator>Tang, Jianshi</creator><creator>Zhang, Qingtian</creator><creator>Shen, Cheng</creator><creator>Tang, Jian</creator><creator>Huang, Heyi</creator><creator>Wang, Shuopei</creator><creator>Li, Jiawei</creator><creator>Huang, Biying</creator><creator>Wei, Zheng</creator><creator>Guo, Yutuo</creator><creator>Yuan, Jiahao</creator><creator>Yang, Wei</creator><creator>Yang, Rong</creator><creator>Shi, Dongxia</creator><creator>Zhang, Guangyu</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220601</creationdate><title>Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses</title><author>Li, Na ; He, Congli ; Wang, Qinqin ; Tang, Jianshi ; Zhang, Qingtian ; Shen, Cheng ; Tang, Jian ; Huang, Heyi ; Wang, Shuopei ; Li, Jiawei ; Huang, Biying ; Wei, Zheng ; Guo, Yutuo ; Yuan, Jiahao ; Yang, Wei ; Yang, Rong ; Shi, Dongxia ; Zhang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Associative learning</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Classical conditioning</topic><topic>Communications systems</topic><topic>Condensed Matter Physics</topic><topic>Learning</topic><topic>Learning behavior</topic><topic>Light effects</topic><topic>Long term memory</topic><topic>Long-term depression</topic><topic>Long-term potentiation</topic><topic>Materials Science</topic><topic>Mimicry</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>Optical communication</topic><topic>Optoelectronic devices</topic><topic>Paired-pulse facilitation</topic><topic>Photometers</topic><topic>Research Article</topic><topic>Short term memory</topic><topic>Synapses</topic><topic>Visible spectrum</topic><topic>Visual perception</topic><topic>Voltage pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>He, Congli</creatorcontrib><creatorcontrib>Wang, Qinqin</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Huang, Heyi</creatorcontrib><creatorcontrib>Wang, Shuopei</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Huang, Biying</creatorcontrib><creatorcontrib>Wei, Zheng</creatorcontrib><creatorcontrib>Guo, Yutuo</creatorcontrib><creatorcontrib>Yuan, Jiahao</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Na</au><au>He, Congli</au><au>Wang, Qinqin</au><au>Tang, Jianshi</au><au>Zhang, Qingtian</au><au>Shen, Cheng</au><au>Tang, Jian</au><au>Huang, Heyi</au><au>Wang, Shuopei</au><au>Li, Jiawei</au><au>Huang, Biying</au><au>Wei, Zheng</au><au>Guo, Yutuo</au><au>Yuan, Jiahao</au><au>Yang, Wei</au><au>Yang, Rong</au><au>Shi, Dongxia</au><au>Zhang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>5418</spage><epage>5424</epage><pages>5418-5424</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS 2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS 2 -based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS 2 -based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS 2 -based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4122-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-06, Vol.15 (6), p.5418-5424
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2673243782
source Springer Nature
subjects Artificial neural networks
Associative learning
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Classical conditioning
Communications systems
Condensed Matter Physics
Learning
Learning behavior
Light effects
Long term memory
Long-term depression
Long-term potentiation
Materials Science
Mimicry
Molybdenum disulfide
Monolayers
Nanotechnology
Neural networks
Neuromorphic computing
Optical communication
Optoelectronic devices
Paired-pulse facilitation
Photometers
Research Article
Short term memory
Synapses
Visible spectrum
Visual perception
Voltage pulses
title Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate-tunable%20large-scale%20flexible%20monolayer%20MoS2%20devices%20for%20photodetectors%20and%20optoelectronic%20synapses&rft.jtitle=Nano%20research&rft.au=Li,%20Na&rft.date=2022-06-01&rft.volume=15&rft.issue=6&rft.spage=5418&rft.epage=5424&rft.pages=5418-5424&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4122-z&rft_dat=%3Cproquest_cross%3E2673243782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f9fffb13585f9c09e4ad1a67c68f99285c4cfb4d1b2ae3314f8b21363d1c64e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2673243782&rft_id=info:pmid/&rfr_iscdi=true