Loading…

Smooth‐rough asymmetric PLGA structure made of dip coating membrane and electrospun nanofibrous scaffolds meant to be used for guided tissue regeneration of periodontium

A surgical procedure for the repair of damaged periodontal tissue is Guided Tissue Regeneration (GTR), which involves the use of a barrier membrane to prevent soft tissue ingrowth and create a space for slow regeneration of periodontium and bone. GTR membrane should have pores able to facilitate the...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2022-06, Vol.62 (6), p.2061-2069
Main Authors: Nitti, Paola, Palazzo, Barbara, Gallo, Nunzia, Scalera, Francesca, Sannino, Alessandro, Gervaso, Francesca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A surgical procedure for the repair of damaged periodontal tissue is Guided Tissue Regeneration (GTR), which involves the use of a barrier membrane to prevent soft tissue ingrowth and create a space for slow regeneration of periodontium and bone. GTR membrane should have pores able to facilitate the diffusion of fluids, oxygen, nutrients, and bioactive substances for cell growth, but also be impermeable to epithelial cells or gingival fibroblasts, which could overpopulate the defect space and inhibit infiltration and activity of bone‐forming cells. In this paper, a bilayer PLGA membrane was realized by coupling the dip coating and electrospinning techniques. The rough layer of the double‐sided structure was electrospun on the previously prepared smooth dip‐coated membrane. A rotating drum collector at two rotating speeds was used to generate different fibers orientation. The bilayer membrane with different superimposed surfaces was successfully fabricated and characterized from a morphological, physicochemical, and the mechanical point of view. Performed analyses revealed that the membrane possesses suitable properties, especially from mechanical point of view, for its possible use as a scaffold for the GTR of periodontum. A high fiber alignment and improved mechanical properties with respect to available GTR membranes characterized the product resulting from this study. A smooth‐rough asymmetric PLGA structure for Guide tissue Regeneration of Periodontium was developed. The smooth and rough layers were fabricated respectively with dip coating and electrospinning technique. The bilayer membrane optimized presented good chemical and mechanical properties suitable for clinical use.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.25988