Loading…

Model predictive eco-driving control for heavy-duty trucks using Branch and Bound optimization

Eco-driving (ED) can be used for fuel savings in existing vehicles, requiring only a few hardware modifications. For this technology to be successful in a dynamic environment, ED requires an online real-time implementable policy. In this work, a dedicated Branch and Bound (BnB) model predictive cont...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Wingelaar, B, G R Gonçalves da Silva, Lazar, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eco-driving (ED) can be used for fuel savings in existing vehicles, requiring only a few hardware modifications. For this technology to be successful in a dynamic environment, ED requires an online real-time implementable policy. In this work, a dedicated Branch and Bound (BnB) model predictive control (MPC) algorithm is proposed to solve the optimization part of an ED optimal control problem. The developed MPC solution for ED is based on the following ingredients. As a prediction model, the velocity dynamics as a function of distance is modeled by a finite number of driving modes and gear positions. Then we formulate an optimization problem that minimizes a cost function with two terms: one penalizing the fuel consumption and one penalizing the trip duration. We exploit contextual elements and use a warm-started solution to make the BnB solver run in real-time. The results are evaluated in numerical simulations on two routes in Israel and France and the long haul cycle of the Vehicle Energy consumption Calculation Tool (VECTO). In comparison with a human driver and a Pontryagin's Minimum Principle (PMP) solution, 25.8% and 12.9% fuel savings, respectively, are achieved on average.
ISSN:2331-8422
DOI:10.48550/arxiv.2206.02447