Loading…
Enhanced adhesion of copper plating to polyether ether ketone based on active oxygen species generated under ultraviolet irradiation
Polyether ether ketone (PEEK) is a substrate for metal plating to overcome insulation defects and satisfy the increased demands of mechanically robust electronic circuit boards. However, pristine PEEK is hydrophobic; hence, the adhesion between the metal film and PEEK substrate is poor. Therefore, t...
Saved in:
Published in: | Surface and interface analysis 2022-07, Vol.54 (7), p.759-766 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyether ether ketone (PEEK) is a substrate for metal plating to overcome insulation defects and satisfy the increased demands of mechanically robust electronic circuit boards. However, pristine PEEK is hydrophobic; hence, the adhesion between the metal film and PEEK substrate is poor. Therefore, the PEEK surface should be modified to improve hydrophobicity. We have proposed the active oxygen (AOS) treatment under ultraviolet (UV) light as an alternative to a conventional plasma treatment method. Characteristics of the PEEK surfaces obtained by these methods are compared. We explore the effects of reactive‐oxygen and UV light exposure time on the PEEK surface modification. The contact angle of water drop on PEEK after the AOS treatment is lower than that of untreated PEEK. Furthermore, COO groups are observed on the PEEK surface after the treatment. Although plasma treatment has the effect of roughening the surface, it is desirable not to roughen the surface for use in electronic circuit boards. Moreover, we have reported the adhesion strength between PEEK and copper plating without surface roughening. |
---|---|
ISSN: | 0142-2421 1096-9918 |
DOI: | 10.1002/sia.7088 |