Loading…

Gaia-DR2 asteroid observations and INPOP planetary ephemerides

We used the INPOP19a planetary ephemerides to perform the orbital adjustment of 14099 asteroids based on Gaia-DR2 observations and compare for 23 of them the resulting orbits to radar data. As Gaia-DR2 has been processed using the planetary ephemeris INPOP10e, the primary goal of this paper is to co...

Full description

Saved in:
Bibliographic Details
Published in:Celestial mechanics and dynamical astronomy 2022-06, Vol.134 (3), Article 32
Main Authors: Deram, P., Fienga, A., Verma, A. K., Gastineau, M., Laskar, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used the INPOP19a planetary ephemerides to perform the orbital adjustment of 14099 asteroids based on Gaia-DR2 observations and compare for 23 of them the resulting orbits to radar data. As Gaia-DR2 has been processed using the planetary ephemeris INPOP10e, the primary goal of this paper is to confirm the portability of the data when using an updated version of the solar system model. In particular, we point out the fact that the Gaia satellite positions—provided with respect to the INPOP10e solar system barycenter—must be corrected when using another planetary ephemeris. We also present a convenient least square formalism that only handles small matrices and allows the adjustment of global parameters, such as masses. In order to check the consistency of the Gaia observations with other types of observations, we perform an orbital adjustment in combining Gaia and radar range observations for 23 objects, together with a careful post-fit analysis including an estimation of the Gaia systematic errors. Finally, we show that to ensure the combined use of Gaia angular DR2 observations and radar ranging, a more developed than firstly proposed dynamical modeling is required together with the addition of the systematic Gaia bias in the fit procedure. These results give promising directions for the next Gaia delivery, Gaia-DR3.
ISSN:0923-2958
1572-9478
DOI:10.1007/s10569-022-10084-6