Loading…

3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models

The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2022-06, Vol.14 (22), p.8112-8129
Main Authors: Nie, Ran, Sun, Yue, Lv, Huixin, Lu, Ming, Huangfu, Huimin, Li, Yangyang, Zhang, Yidi, Wang, Dongyang, Wang, Lin, Zhou, Yanmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13
cites cdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13
container_end_page 8129
container_issue 22
container_start_page 8112
container_title Nanoscale
container_volume 14
creator Nie, Ran
Sun, Yue
Lv, Huixin
Lu, Ming
Huangfu, Huimin
Li, Yangyang
Zhang, Yidi
Wang, Dongyang
Wang, Lin
Zhou, Yanmin
description The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene (Ti 3 C 2 ) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing. In vitro , GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr 2+ , and β-TCP. In vivo , we implanted 3D printed GTAM scaffolds in S. aureus -infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials. The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.
doi_str_mv 10.1039/d2nr02176e
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2674210416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674210416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</originalsourceid><addsrcrecordid>eNpdkV-r0zAYh4Mo7ji98f5IwBsRqmmSpumlbPMPTAVR8K6kyZsto212klTYl_Azm7q5A0IgefM-eQjvD6HnJXlTEta8NXQMhJa1gAfohhJOCsZq-vB6FnyBnsR4IEQ0TLDHaMEqUVJeihv0m63xMbgxuXGHvcWff8IIWPvh6KNLgPcnE_wOehy1stb3JmLrAz7uffJpD2FQPVb5dad0guDmSif3y6VTvja489kWYJelQSXnR-zmZSHTl66BucKDN9DHp-iRVX2EZ5d9iX6833xffSy2Xz98Wr3bFprVMhWdoTVlpJPCcgKs4UpqTRhTUhjFOO8aSQlUVHZWNFZ2nNVE142UQBWnpmRL9OrsPQZ_N0FM7eCihr5XI_gptlSIpspCWmX05X_owU9hzL_LVM1pSfIgM_X6TOngYwxg2zzVQYVTW5J2Tqld0y_f_qa0yfCLi3LqBjBX9F8sGbg9AyHqa_c-ZvYHm7aYJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674210416</pqid></control><display><type>article</type><title>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</title><source>Royal Society of Chemistry Journals</source><creator>Nie, Ran ; Sun, Yue ; Lv, Huixin ; Lu, Ming ; Huangfu, Huimin ; Li, Yangyang ; Zhang, Yidi ; Wang, Dongyang ; Wang, Lin ; Zhou, Yanmin</creator><creatorcontrib>Nie, Ran ; Sun, Yue ; Lv, Huixin ; Lu, Ming ; Huangfu, Huimin ; Li, Yangyang ; Zhang, Yidi ; Wang, Dongyang ; Wang, Lin ; Zhou, Yanmin</creatorcontrib><description>The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene (Ti 3 C 2 ) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing. In vitro , GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr 2+ , and β-TCP. In vivo , we implanted 3D printed GTAM scaffolds in S. aureus -infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials. The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr02176e</identifier><identifier>PMID: 35612416</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>3-D printers ; Biocompatibility ; Biomedical materials ; Bone marrow ; Defects ; Hydrogels ; Irradiation ; MXenes ; Near infrared radiation ; Regeneration (physiology) ; Scaffolds ; Sodium alginate ; Stem cells ; Three dimensional composites ; Three dimensional printing ; Tissue engineering</subject><ispartof>Nanoscale, 2022-06, Vol.14 (22), p.8112-8129</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</citedby><cites>FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</cites><orcidid>0000-0002-5696-1076 ; 0000-0003-0769-1409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35612416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Ran</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Lv, Huixin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Huangfu, Huimin</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Zhang, Yidi</creatorcontrib><creatorcontrib>Wang, Dongyang</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><title>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene (Ti 3 C 2 ) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing. In vitro , GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr 2+ , and β-TCP. In vivo , we implanted 3D printed GTAM scaffolds in S. aureus -infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials. The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.</description><subject>3-D printers</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone marrow</subject><subject>Defects</subject><subject>Hydrogels</subject><subject>Irradiation</subject><subject>MXenes</subject><subject>Near infrared radiation</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Sodium alginate</subject><subject>Stem cells</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkV-r0zAYh4Mo7ji98f5IwBsRqmmSpumlbPMPTAVR8K6kyZsto212klTYl_Azm7q5A0IgefM-eQjvD6HnJXlTEta8NXQMhJa1gAfohhJOCsZq-vB6FnyBnsR4IEQ0TLDHaMEqUVJeihv0m63xMbgxuXGHvcWff8IIWPvh6KNLgPcnE_wOehy1stb3JmLrAz7uffJpD2FQPVb5dad0guDmSif3y6VTvja489kWYJelQSXnR-zmZSHTl66BucKDN9DHp-iRVX2EZ5d9iX6833xffSy2Xz98Wr3bFprVMhWdoTVlpJPCcgKs4UpqTRhTUhjFOO8aSQlUVHZWNFZ2nNVE142UQBWnpmRL9OrsPQZ_N0FM7eCihr5XI_gptlSIpspCWmX05X_owU9hzL_LVM1pSfIgM_X6TOngYwxg2zzVQYVTW5J2Tqld0y_f_qa0yfCLi3LqBjBX9F8sGbg9AyHqa_c-ZvYHm7aYJg</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Nie, Ran</creator><creator>Sun, Yue</creator><creator>Lv, Huixin</creator><creator>Lu, Ming</creator><creator>Huangfu, Huimin</creator><creator>Li, Yangyang</creator><creator>Zhang, Yidi</creator><creator>Wang, Dongyang</creator><creator>Wang, Lin</creator><creator>Zhou, Yanmin</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5696-1076</orcidid><orcidid>https://orcid.org/0000-0003-0769-1409</orcidid></search><sort><creationdate>20220609</creationdate><title>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</title><author>Nie, Ran ; Sun, Yue ; Lv, Huixin ; Lu, Ming ; Huangfu, Huimin ; Li, Yangyang ; Zhang, Yidi ; Wang, Dongyang ; Wang, Lin ; Zhou, Yanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone marrow</topic><topic>Defects</topic><topic>Hydrogels</topic><topic>Irradiation</topic><topic>MXenes</topic><topic>Near infrared radiation</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Sodium alginate</topic><topic>Stem cells</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Ran</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Lv, Huixin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Huangfu, Huimin</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Zhang, Yidi</creatorcontrib><creatorcontrib>Wang, Dongyang</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Ran</au><au>Sun, Yue</au><au>Lv, Huixin</au><au>Lu, Ming</au><au>Huangfu, Huimin</au><au>Li, Yangyang</au><au>Zhang, Yidi</au><au>Wang, Dongyang</au><au>Wang, Lin</au><au>Zhou, Yanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2022-06-09</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>8112</spage><epage>8129</epage><pages>8112-8129</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene (Ti 3 C 2 ) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing. In vitro , GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr 2+ , and β-TCP. In vivo , we implanted 3D printed GTAM scaffolds in S. aureus -infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials. The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr 2+ )/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35612416</pmid><doi>10.1039/d2nr02176e</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5696-1076</orcidid><orcidid>https://orcid.org/0000-0003-0769-1409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-06, Vol.14 (22), p.8112-8129
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2674210416
source Royal Society of Chemistry Journals
subjects 3-D printers
Biocompatibility
Biomedical materials
Bone marrow
Defects
Hydrogels
Irradiation
MXenes
Near infrared radiation
Regeneration (physiology)
Scaffolds
Sodium alginate
Stem cells
Three dimensional composites
Three dimensional printing
Tissue engineering
title 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20MXene%20composite%20hydrogel%20scaffolds%20for%20photothermal%20antibacterial%20activity%20and%20bone%20regeneration%20in%20infected%20bone%20defect%20models&rft.jtitle=Nanoscale&rft.au=Nie,%20Ran&rft.date=2022-06-09&rft.volume=14&rft.issue=22&rft.spage=8112&rft.epage=8129&rft.pages=8112-8129&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr02176e&rft_dat=%3Cproquest_pubme%3E2674210416%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674210416&rft_id=info:pmid/35612416&rfr_iscdi=true