Loading…
3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models
The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a...
Saved in:
Published in: | Nanoscale 2022-06, Vol.14 (22), p.8112-8129 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13 |
container_end_page | 8129 |
container_issue | 22 |
container_start_page | 8112 |
container_title | Nanoscale |
container_volume | 14 |
creator | Nie, Ran Sun, Yue Lv, Huixin Lu, Ming Huangfu, Huimin Li, Yangyang Zhang, Yidi Wang, Dongyang Wang, Lin Zhou, Yanmin |
description | The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene (Ti
3
C
2
) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing.
In vitro
, GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr
2+
, and β-TCP.
In vivo
, we implanted 3D printed GTAM scaffolds in
S. aureus
-infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials.
The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes. |
doi_str_mv | 10.1039/d2nr02176e |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2674210416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674210416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</originalsourceid><addsrcrecordid>eNpdkV-r0zAYh4Mo7ji98f5IwBsRqmmSpumlbPMPTAVR8K6kyZsto212klTYl_Azm7q5A0IgefM-eQjvD6HnJXlTEta8NXQMhJa1gAfohhJOCsZq-vB6FnyBnsR4IEQ0TLDHaMEqUVJeihv0m63xMbgxuXGHvcWff8IIWPvh6KNLgPcnE_wOehy1stb3JmLrAz7uffJpD2FQPVb5dad0guDmSif3y6VTvja489kWYJelQSXnR-zmZSHTl66BucKDN9DHp-iRVX2EZ5d9iX6833xffSy2Xz98Wr3bFprVMhWdoTVlpJPCcgKs4UpqTRhTUhjFOO8aSQlUVHZWNFZ2nNVE142UQBWnpmRL9OrsPQZ_N0FM7eCihr5XI_gptlSIpspCWmX05X_owU9hzL_LVM1pSfIgM_X6TOngYwxg2zzVQYVTW5J2Tqld0y_f_qa0yfCLi3LqBjBX9F8sGbg9AyHqa_c-ZvYHm7aYJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674210416</pqid></control><display><type>article</type><title>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</title><source>Royal Society of Chemistry Journals</source><creator>Nie, Ran ; Sun, Yue ; Lv, Huixin ; Lu, Ming ; Huangfu, Huimin ; Li, Yangyang ; Zhang, Yidi ; Wang, Dongyang ; Wang, Lin ; Zhou, Yanmin</creator><creatorcontrib>Nie, Ran ; Sun, Yue ; Lv, Huixin ; Lu, Ming ; Huangfu, Huimin ; Li, Yangyang ; Zhang, Yidi ; Wang, Dongyang ; Wang, Lin ; Zhou, Yanmin</creatorcontrib><description>The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene (Ti
3
C
2
) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing.
In vitro
, GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr
2+
, and β-TCP.
In vivo
, we implanted 3D printed GTAM scaffolds in
S. aureus
-infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials.
The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr02176e</identifier><identifier>PMID: 35612416</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>3-D printers ; Biocompatibility ; Biomedical materials ; Bone marrow ; Defects ; Hydrogels ; Irradiation ; MXenes ; Near infrared radiation ; Regeneration (physiology) ; Scaffolds ; Sodium alginate ; Stem cells ; Three dimensional composites ; Three dimensional printing ; Tissue engineering</subject><ispartof>Nanoscale, 2022-06, Vol.14 (22), p.8112-8129</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</citedby><cites>FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</cites><orcidid>0000-0002-5696-1076 ; 0000-0003-0769-1409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35612416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Ran</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Lv, Huixin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Huangfu, Huimin</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Zhang, Yidi</creatorcontrib><creatorcontrib>Wang, Dongyang</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><title>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene (Ti
3
C
2
) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing.
In vitro
, GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr
2+
, and β-TCP.
In vivo
, we implanted 3D printed GTAM scaffolds in
S. aureus
-infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials.
The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.</description><subject>3-D printers</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone marrow</subject><subject>Defects</subject><subject>Hydrogels</subject><subject>Irradiation</subject><subject>MXenes</subject><subject>Near infrared radiation</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Sodium alginate</subject><subject>Stem cells</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkV-r0zAYh4Mo7ji98f5IwBsRqmmSpumlbPMPTAVR8K6kyZsto212klTYl_Azm7q5A0IgefM-eQjvD6HnJXlTEta8NXQMhJa1gAfohhJOCsZq-vB6FnyBnsR4IEQ0TLDHaMEqUVJeihv0m63xMbgxuXGHvcWff8IIWPvh6KNLgPcnE_wOehy1stb3JmLrAz7uffJpD2FQPVb5dad0guDmSif3y6VTvja489kWYJelQSXnR-zmZSHTl66BucKDN9DHp-iRVX2EZ5d9iX6833xffSy2Xz98Wr3bFprVMhWdoTVlpJPCcgKs4UpqTRhTUhjFOO8aSQlUVHZWNFZ2nNVE142UQBWnpmRL9OrsPQZ_N0FM7eCihr5XI_gptlSIpspCWmX05X_owU9hzL_LVM1pSfIgM_X6TOngYwxg2zzVQYVTW5J2Tqld0y_f_qa0yfCLi3LqBjBX9F8sGbg9AyHqa_c-ZvYHm7aYJg</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Nie, Ran</creator><creator>Sun, Yue</creator><creator>Lv, Huixin</creator><creator>Lu, Ming</creator><creator>Huangfu, Huimin</creator><creator>Li, Yangyang</creator><creator>Zhang, Yidi</creator><creator>Wang, Dongyang</creator><creator>Wang, Lin</creator><creator>Zhou, Yanmin</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5696-1076</orcidid><orcidid>https://orcid.org/0000-0003-0769-1409</orcidid></search><sort><creationdate>20220609</creationdate><title>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</title><author>Nie, Ran ; Sun, Yue ; Lv, Huixin ; Lu, Ming ; Huangfu, Huimin ; Li, Yangyang ; Zhang, Yidi ; Wang, Dongyang ; Wang, Lin ; Zhou, Yanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone marrow</topic><topic>Defects</topic><topic>Hydrogels</topic><topic>Irradiation</topic><topic>MXenes</topic><topic>Near infrared radiation</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Sodium alginate</topic><topic>Stem cells</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Ran</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Lv, Huixin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Huangfu, Huimin</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Zhang, Yidi</creatorcontrib><creatorcontrib>Wang, Dongyang</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Ran</au><au>Sun, Yue</au><au>Lv, Huixin</au><au>Lu, Ming</au><au>Huangfu, Huimin</au><au>Li, Yangyang</au><au>Zhang, Yidi</au><au>Wang, Dongyang</au><au>Wang, Lin</au><au>Zhou, Yanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2022-06-09</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>8112</spage><epage>8129</epage><pages>8112-8129</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The repair of infected bone defects with irregular shapes is still a challenge in clinical work. Infected bone defects are faced with several major concerns: the complex shapes of bone defects, intractable bacterial infection and insufficient osseointegration. To solve these problems, we developed a personalized MXene composite hydrogel scaffold GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene (Ti
3
C
2
) (GTAM) with photothermal antibacterial and osteogenic abilities by 3D printing.
In vitro
, GTAM scaffolds could kill both Gram-positive and Gram-negative bacteria by NIR irradiation due to the excellent photothermal effects of MXene. Furthermore, rat bone marrow mesenchymal stem cells were mixed into GTAM bioinks for 3D bioprinting. The cell-laden 3D printed GTAM scaffolds showed biocompatibility and bone formation ability depending on MXene, crosslinked Sr
2+
, and β-TCP.
In vivo
, we implanted 3D printed GTAM scaffolds in
S. aureus
-infected mandible defects of rats with NIR irradiation. GTAM scaffolds could accelerate the healing of infection and bone regeneration, and play synergistic roles in antibacterial and osteogenic effects. This study not only provides a strategy for the precise osteogenesis of infected bone defects, but also broadens the biomedical applications of MXene photothermal materials.
The design of bifunctional 3D printed scaffolds GelMA/β-TCP/sodium alginate (Sr
2+
)/MXene provides an effective strategy for the personalized treatment of infected bone defects and broadens the biomedical application of 2D nanomaterial MXenes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35612416</pmid><doi>10.1039/d2nr02176e</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5696-1076</orcidid><orcidid>https://orcid.org/0000-0003-0769-1409</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2022-06, Vol.14 (22), p.8112-8129 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2674210416 |
source | Royal Society of Chemistry Journals |
subjects | 3-D printers Biocompatibility Biomedical materials Bone marrow Defects Hydrogels Irradiation MXenes Near infrared radiation Regeneration (physiology) Scaffolds Sodium alginate Stem cells Three dimensional composites Three dimensional printing Tissue engineering |
title | 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20MXene%20composite%20hydrogel%20scaffolds%20for%20photothermal%20antibacterial%20activity%20and%20bone%20regeneration%20in%20infected%20bone%20defect%20models&rft.jtitle=Nanoscale&rft.au=Nie,%20Ran&rft.date=2022-06-09&rft.volume=14&rft.issue=22&rft.spage=8112&rft.epage=8129&rft.pages=8112-8129&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr02176e&rft_dat=%3Cproquest_pubme%3E2674210416%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-bd27230b86f40e394a8cc033a86da344b9820e528bf69f8b4370c7988e2a42d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674210416&rft_id=info:pmid/35612416&rfr_iscdi=true |