Loading…
The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs
The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they a...
Saved in:
Published in: | Sustainability 2022-06, Vol.14 (11), p.6416 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583 |
---|---|
cites | cdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583 |
container_end_page | |
container_issue | 11 |
container_start_page | 6416 |
container_title | Sustainability |
container_volume | 14 |
creator | Dankowska, Anna Majsnerowicz, Agnieszka Kowalewski, Wojciech Włodarska, Katarzyna |
description | The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling. |
doi_str_mv | 10.3390/su14116416 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674408511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784034319</galeid><sourcerecordid>A784034319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</originalsourceid><addsrcrecordid>eNpVkd9LwzAQx4soOOZe_AsCPil0Jk3atI-j_thgKLjpa0nTy5bRNjVp0f33Ria43T3ccXzue9xdEFwTPKU0w_duIIyQhJHkLBhFmJOQ4BifH-WXwcS5HfZGKclIMgqG9RbQrOtqLUWvTYuMQh_a6bIGJNoKvYCw4aJVVlio0KoD2VvjpOn2KDdNqVtf_dL9FuVbaEwDvdXSId2ivBbOaXUk-2C1h-dgS3cVXChRO5j8xXHw_vS4zufh8vV5kc-WoYwITUKWkYrwjEHJMIuiOIUoFqAyHosUuCqZ8Ltyv0eaVCKqWCTjRHKoSKl4ReOUjoObg25nzecAri92ZrCtH1lECWcMpzEhnpoeqI2oodCtMr0V0nsFjZamBaV9fcZThinzd_MNtycNnunhu9-IwblisXo7Ze8OrPR3cxZU0VndCLsvCC5-31b8v43-AISaiIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674408511</pqid></control><display><type>article</type><title>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</title><source>Access via ProQuest (Open Access)</source><creator>Dankowska, Anna ; Majsnerowicz, Agnieszka ; Kowalewski, Wojciech ; Włodarska, Katarzyna</creator><creatorcontrib>Dankowska, Anna ; Majsnerowicz, Agnieszka ; Kowalewski, Wojciech ; Włodarska, Katarzyna</creatorcontrib><description>The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14116416</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Animal behavior ; Chemical bonds ; Chemical compounds ; Chromatography ; Classification ; Computer software industry ; Discriminant analysis ; Food ; Fraud ; Herbs ; Humidity ; I.R. radiation ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; International economic relations ; Microorganisms ; Near infrared radiation ; Pattern recognition ; Pharmaceutical industry ; Principal components analysis ; Quality control ; Separation techniques ; Support vector machines ; Sustainability ; VOCs ; Volatile organic compounds</subject><ispartof>Sustainability, 2022-06, Vol.14 (11), p.6416</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</citedby><cites>FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</cites><orcidid>0000-0003-2534-4769 ; 0000-0001-7611-001X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674408511/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674408511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dankowska, Anna</creatorcontrib><creatorcontrib>Majsnerowicz, Agnieszka</creatorcontrib><creatorcontrib>Kowalewski, Wojciech</creatorcontrib><creatorcontrib>Włodarska, Katarzyna</creatorcontrib><title>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</title><title>Sustainability</title><description>The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.</description><subject>Animal behavior</subject><subject>Chemical bonds</subject><subject>Chemical compounds</subject><subject>Chromatography</subject><subject>Classification</subject><subject>Computer software industry</subject><subject>Discriminant analysis</subject><subject>Food</subject><subject>Fraud</subject><subject>Herbs</subject><subject>Humidity</subject><subject>I.R. radiation</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>International economic relations</subject><subject>Microorganisms</subject><subject>Near infrared radiation</subject><subject>Pattern recognition</subject><subject>Pharmaceutical industry</subject><subject>Principal components analysis</subject><subject>Quality control</subject><subject>Separation techniques</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkd9LwzAQx4soOOZe_AsCPil0Jk3atI-j_thgKLjpa0nTy5bRNjVp0f33Ria43T3ccXzue9xdEFwTPKU0w_duIIyQhJHkLBhFmJOQ4BifH-WXwcS5HfZGKclIMgqG9RbQrOtqLUWvTYuMQh_a6bIGJNoKvYCw4aJVVlio0KoD2VvjpOn2KDdNqVtf_dL9FuVbaEwDvdXSId2ivBbOaXUk-2C1h-dgS3cVXChRO5j8xXHw_vS4zufh8vV5kc-WoYwITUKWkYrwjEHJMIuiOIUoFqAyHosUuCqZ8Ltyv0eaVCKqWCTjRHKoSKl4ReOUjoObg25nzecAri92ZrCtH1lECWcMpzEhnpoeqI2oodCtMr0V0nsFjZamBaV9fcZThinzd_MNtycNnunhu9-IwblisXo7Ze8OrPR3cxZU0VndCLsvCC5-31b8v43-AISaiIc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Dankowska, Anna</creator><creator>Majsnerowicz, Agnieszka</creator><creator>Kowalewski, Wojciech</creator><creator>Włodarska, Katarzyna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2534-4769</orcidid><orcidid>https://orcid.org/0000-0001-7611-001X</orcidid></search><sort><creationdate>20220601</creationdate><title>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</title><author>Dankowska, Anna ; Majsnerowicz, Agnieszka ; Kowalewski, Wojciech ; Włodarska, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal behavior</topic><topic>Chemical bonds</topic><topic>Chemical compounds</topic><topic>Chromatography</topic><topic>Classification</topic><topic>Computer software industry</topic><topic>Discriminant analysis</topic><topic>Food</topic><topic>Fraud</topic><topic>Herbs</topic><topic>Humidity</topic><topic>I.R. radiation</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>International economic relations</topic><topic>Microorganisms</topic><topic>Near infrared radiation</topic><topic>Pattern recognition</topic><topic>Pharmaceutical industry</topic><topic>Principal components analysis</topic><topic>Quality control</topic><topic>Separation techniques</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dankowska, Anna</creatorcontrib><creatorcontrib>Majsnerowicz, Agnieszka</creatorcontrib><creatorcontrib>Kowalewski, Wojciech</creatorcontrib><creatorcontrib>Włodarska, Katarzyna</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dankowska, Anna</au><au>Majsnerowicz, Agnieszka</au><au>Kowalewski, Wojciech</au><au>Włodarska, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</atitle><jtitle>Sustainability</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>11</issue><spage>6416</spage><pages>6416-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14116416</doi><orcidid>https://orcid.org/0000-0003-2534-4769</orcidid><orcidid>https://orcid.org/0000-0001-7611-001X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-06, Vol.14 (11), p.6416 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2674408511 |
source | Access via ProQuest (Open Access) |
subjects | Animal behavior Chemical bonds Chemical compounds Chromatography Classification Computer software industry Discriminant analysis Food Fraud Herbs Humidity I.R. radiation Infrared analysis Infrared spectra Infrared spectroscopy International economic relations Microorganisms Near infrared radiation Pattern recognition Pharmaceutical industry Principal components analysis Quality control Separation techniques Support vector machines Sustainability VOCs Volatile organic compounds |
title | The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20Visible%20and%20Near-Infrared%20Spectroscopy%20Combined%20with%20Chemometrics%20in%20Classification%20of%20Dried%20Herbs&rft.jtitle=Sustainability&rft.au=Dankowska,%20Anna&rft.date=2022-06-01&rft.volume=14&rft.issue=11&rft.spage=6416&rft.pages=6416-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14116416&rft_dat=%3Cgale_proqu%3EA784034319%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674408511&rft_id=info:pmid/&rft_galeid=A784034319&rfr_iscdi=true |