Loading…

The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs

The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they a...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-06, Vol.14 (11), p.6416
Main Authors: Dankowska, Anna, Majsnerowicz, Agnieszka, Kowalewski, Wojciech, Włodarska, Katarzyna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583
cites cdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583
container_end_page
container_issue 11
container_start_page 6416
container_title Sustainability
container_volume 14
creator Dankowska, Anna
Majsnerowicz, Agnieszka
Kowalewski, Wojciech
Włodarska, Katarzyna
description The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.
doi_str_mv 10.3390/su14116416
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674408511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784034319</galeid><sourcerecordid>A784034319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</originalsourceid><addsrcrecordid>eNpVkd9LwzAQx4soOOZe_AsCPil0Jk3atI-j_thgKLjpa0nTy5bRNjVp0f33Ria43T3ccXzue9xdEFwTPKU0w_duIIyQhJHkLBhFmJOQ4BifH-WXwcS5HfZGKclIMgqG9RbQrOtqLUWvTYuMQh_a6bIGJNoKvYCw4aJVVlio0KoD2VvjpOn2KDdNqVtf_dL9FuVbaEwDvdXSId2ivBbOaXUk-2C1h-dgS3cVXChRO5j8xXHw_vS4zufh8vV5kc-WoYwITUKWkYrwjEHJMIuiOIUoFqAyHosUuCqZ8Ltyv0eaVCKqWCTjRHKoSKl4ReOUjoObg25nzecAri92ZrCtH1lECWcMpzEhnpoeqI2oodCtMr0V0nsFjZamBaV9fcZThinzd_MNtycNnunhu9-IwblisXo7Ze8OrPR3cxZU0VndCLsvCC5-31b8v43-AISaiIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674408511</pqid></control><display><type>article</type><title>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</title><source>Access via ProQuest (Open Access)</source><creator>Dankowska, Anna ; Majsnerowicz, Agnieszka ; Kowalewski, Wojciech ; Włodarska, Katarzyna</creator><creatorcontrib>Dankowska, Anna ; Majsnerowicz, Agnieszka ; Kowalewski, Wojciech ; Włodarska, Katarzyna</creatorcontrib><description>The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14116416</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Animal behavior ; Chemical bonds ; Chemical compounds ; Chromatography ; Classification ; Computer software industry ; Discriminant analysis ; Food ; Fraud ; Herbs ; Humidity ; I.R. radiation ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; International economic relations ; Microorganisms ; Near infrared radiation ; Pattern recognition ; Pharmaceutical industry ; Principal components analysis ; Quality control ; Separation techniques ; Support vector machines ; Sustainability ; VOCs ; Volatile organic compounds</subject><ispartof>Sustainability, 2022-06, Vol.14 (11), p.6416</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</citedby><cites>FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</cites><orcidid>0000-0003-2534-4769 ; 0000-0001-7611-001X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674408511/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674408511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dankowska, Anna</creatorcontrib><creatorcontrib>Majsnerowicz, Agnieszka</creatorcontrib><creatorcontrib>Kowalewski, Wojciech</creatorcontrib><creatorcontrib>Włodarska, Katarzyna</creatorcontrib><title>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</title><title>Sustainability</title><description>The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.</description><subject>Animal behavior</subject><subject>Chemical bonds</subject><subject>Chemical compounds</subject><subject>Chromatography</subject><subject>Classification</subject><subject>Computer software industry</subject><subject>Discriminant analysis</subject><subject>Food</subject><subject>Fraud</subject><subject>Herbs</subject><subject>Humidity</subject><subject>I.R. radiation</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>International economic relations</subject><subject>Microorganisms</subject><subject>Near infrared radiation</subject><subject>Pattern recognition</subject><subject>Pharmaceutical industry</subject><subject>Principal components analysis</subject><subject>Quality control</subject><subject>Separation techniques</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkd9LwzAQx4soOOZe_AsCPil0Jk3atI-j_thgKLjpa0nTy5bRNjVp0f33Ria43T3ccXzue9xdEFwTPKU0w_duIIyQhJHkLBhFmJOQ4BifH-WXwcS5HfZGKclIMgqG9RbQrOtqLUWvTYuMQh_a6bIGJNoKvYCw4aJVVlio0KoD2VvjpOn2KDdNqVtf_dL9FuVbaEwDvdXSId2ivBbOaXUk-2C1h-dgS3cVXChRO5j8xXHw_vS4zufh8vV5kc-WoYwITUKWkYrwjEHJMIuiOIUoFqAyHosUuCqZ8Ltyv0eaVCKqWCTjRHKoSKl4ReOUjoObg25nzecAri92ZrCtH1lECWcMpzEhnpoeqI2oodCtMr0V0nsFjZamBaV9fcZThinzd_MNtycNnunhu9-IwblisXo7Ze8OrPR3cxZU0VndCLsvCC5-31b8v43-AISaiIc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Dankowska, Anna</creator><creator>Majsnerowicz, Agnieszka</creator><creator>Kowalewski, Wojciech</creator><creator>Włodarska, Katarzyna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2534-4769</orcidid><orcidid>https://orcid.org/0000-0001-7611-001X</orcidid></search><sort><creationdate>20220601</creationdate><title>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</title><author>Dankowska, Anna ; Majsnerowicz, Agnieszka ; Kowalewski, Wojciech ; Włodarska, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal behavior</topic><topic>Chemical bonds</topic><topic>Chemical compounds</topic><topic>Chromatography</topic><topic>Classification</topic><topic>Computer software industry</topic><topic>Discriminant analysis</topic><topic>Food</topic><topic>Fraud</topic><topic>Herbs</topic><topic>Humidity</topic><topic>I.R. radiation</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>International economic relations</topic><topic>Microorganisms</topic><topic>Near infrared radiation</topic><topic>Pattern recognition</topic><topic>Pharmaceutical industry</topic><topic>Principal components analysis</topic><topic>Quality control</topic><topic>Separation techniques</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dankowska, Anna</creatorcontrib><creatorcontrib>Majsnerowicz, Agnieszka</creatorcontrib><creatorcontrib>Kowalewski, Wojciech</creatorcontrib><creatorcontrib>Włodarska, Katarzyna</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dankowska, Anna</au><au>Majsnerowicz, Agnieszka</au><au>Kowalewski, Wojciech</au><au>Włodarska, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs</atitle><jtitle>Sustainability</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>11</issue><spage>6416</spage><pages>6416-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14116416</doi><orcidid>https://orcid.org/0000-0003-2534-4769</orcidid><orcidid>https://orcid.org/0000-0001-7611-001X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-06, Vol.14 (11), p.6416
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2674408511
source Access via ProQuest (Open Access)
subjects Animal behavior
Chemical bonds
Chemical compounds
Chromatography
Classification
Computer software industry
Discriminant analysis
Food
Fraud
Herbs
Humidity
I.R. radiation
Infrared analysis
Infrared spectra
Infrared spectroscopy
International economic relations
Microorganisms
Near infrared radiation
Pattern recognition
Pharmaceutical industry
Principal components analysis
Quality control
Separation techniques
Support vector machines
Sustainability
VOCs
Volatile organic compounds
title The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20Visible%20and%20Near-Infrared%20Spectroscopy%20Combined%20with%20Chemometrics%20in%20Classification%20of%20Dried%20Herbs&rft.jtitle=Sustainability&rft.au=Dankowska,%20Anna&rft.date=2022-06-01&rft.volume=14&rft.issue=11&rft.spage=6416&rft.pages=6416-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14116416&rft_dat=%3Cgale_proqu%3EA784034319%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2136-491d1794eb4042258e25aef975a8e7fb4a416791686da2d42c56c7ed1bf7d3583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674408511&rft_id=info:pmid/&rft_galeid=A784034319&rfr_iscdi=true