Loading…

Winner Takes All: A Superpixel Aided Voting Algorithm for Training Unsupervised PolSAR CNN Classifiers

Unsupervised methods play an essential role in polarimetric synthetic aperture radar (PolSAR) image classification, where labeled data are difficult to obtain. However, there is still a large gap between existing unsupervised learning methods and supervised learning methods. Without the semantic con...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-19
Main Authors: Zuo, Yixin, Guo, Jiayi, Zhang, Yueting, Hu, Yuxin, Lei, Bin, Qiu, Xiaolan, Ding, Chibiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243
cites cdi_FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243
container_end_page 19
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Zuo, Yixin
Guo, Jiayi
Zhang, Yueting
Hu, Yuxin
Lei, Bin
Qiu, Xiaolan
Ding, Chibiao
description Unsupervised methods play an essential role in polarimetric synthetic aperture radar (PolSAR) image classification, where labeled data are difficult to obtain. However, there is still a large gap between existing unsupervised learning methods and supervised learning methods. Without the semantic constraints of labeled data, pixels within the same category are often misclassified into different categories, leaving the output to be messy. To address the previous issue, this article proposes a fully unsupervised pipeline for training convolutional neural networks (CNNs). The pipeline combines low-level superpixels and high-level CNN semantic features for high-quality pseudolabel generation. It effectively eliminates the misclassified pixels by voting within the superpixel blob while preserving the sharpness of edges. With the training process of the model, the quality of the generated labels is getting improved. Experiments on airborne [experimental airborne SAR system from Germany (ESAR)/airborne synthetic aperture radar from America (AIRSAR)] and spaceborne (RadarSat2) PolSAR images prove the effectiveness of the proposed method (measured with overall accuracy (OA), average accuracy (AA), and Kappa metrics). Our method outperforms the previous unsupervised methods (H/alpha-Wishart, SM-Wishart, FDD-H, DEC, and VQC-CAE) with a large margin and even has comparable performance to the supervised CNN model [fully CNN (FCN)].
doi_str_mv 10.1109/TGRS.2022.3177900
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675043145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9781418</ieee_id><sourcerecordid>2675043145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJNmPeFsWrUKp0g89hmw3qanb3ZpsRf-9WVo8Dcy8zwzzIHQNZARAxN1iPJuPKKF0xCBNBSEnaABxnEUk4fwUDQiIJKKZoOfowvsNIcBjSAfIvNum0Q4v1Kf2OK_re5zj-X6n3c7-6BrnttIVfms726zDeN06231ssWkD4pRt-vay8T3wbX2Ivrb1PJ_hYjrFRa28t8Zq5y_RmVG111fHOkTLx4dF8RRNXsbPRT6JVpSyLgJBK0FiFldpqqCKOdDKsIwDMMLSJElYSTLFE9Alz8rwgdFlLLRRZWAM5WyIbg97d6792mvfyU27d004KWmSxoSz8HdIwSG1cq33Thu5c3ar3K8EInudstcpe53yqDMwNwfGaq3_8yLNgEPG_gBVJ2-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675043145</pqid></control><display><type>article</type><title>Winner Takes All: A Superpixel Aided Voting Algorithm for Training Unsupervised PolSAR CNN Classifiers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zuo, Yixin ; Guo, Jiayi ; Zhang, Yueting ; Hu, Yuxin ; Lei, Bin ; Qiu, Xiaolan ; Ding, Chibiao</creator><creatorcontrib>Zuo, Yixin ; Guo, Jiayi ; Zhang, Yueting ; Hu, Yuxin ; Lei, Bin ; Qiu, Xiaolan ; Ding, Chibiao</creatorcontrib><description>Unsupervised methods play an essential role in polarimetric synthetic aperture radar (PolSAR) image classification, where labeled data are difficult to obtain. However, there is still a large gap between existing unsupervised learning methods and supervised learning methods. Without the semantic constraints of labeled data, pixels within the same category are often misclassified into different categories, leaving the output to be messy. To address the previous issue, this article proposes a fully unsupervised pipeline for training convolutional neural networks (CNNs). The pipeline combines low-level superpixels and high-level CNN semantic features for high-quality pseudolabel generation. It effectively eliminates the misclassified pixels by voting within the superpixel blob while preserving the sharpness of edges. With the training process of the model, the quality of the generated labels is getting improved. Experiments on airborne [experimental airborne SAR system from Germany (ESAR)/airborne synthetic aperture radar from America (AIRSAR)] and spaceborne (RadarSat2) PolSAR images prove the effectiveness of the proposed method (measured with overall accuracy (OA), average accuracy (AA), and Kappa metrics). Our method outperforms the previous unsupervised methods (H/alpha-Wishart, SM-Wishart, FDD-H, DEC, and VQC-CAE) with a large margin and even has comparable performance to the supervised CNN model [fully CNN (FCN)].</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3177900</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Airborne radar ; Airborne remote sensing ; Algorithms ; Artificial neural networks ; Convolutional neural network (CNN) model ; Feature extraction ; Image classification ; Methods ; multiscale (MS) semantic feature ; Neural networks ; Pixels ; polarimetric synthetic aperture radar (PolSAR) image ; Radar ; Radar imaging ; SAR (radar) ; Scattering ; Semantics ; Submarine pipelines ; superpixel segmentation ; Supervised learning ; Synthetic aperture radar ; Teaching methods ; Training ; unsupervised classification ; Unsupervised learning ; Voting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243</citedby><cites>FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243</cites><orcidid>0000-0002-8517-3415 ; 0000-0002-3052-4222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9781418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zuo, Yixin</creatorcontrib><creatorcontrib>Guo, Jiayi</creatorcontrib><creatorcontrib>Zhang, Yueting</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><creatorcontrib>Lei, Bin</creatorcontrib><creatorcontrib>Qiu, Xiaolan</creatorcontrib><creatorcontrib>Ding, Chibiao</creatorcontrib><title>Winner Takes All: A Superpixel Aided Voting Algorithm for Training Unsupervised PolSAR CNN Classifiers</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Unsupervised methods play an essential role in polarimetric synthetic aperture radar (PolSAR) image classification, where labeled data are difficult to obtain. However, there is still a large gap between existing unsupervised learning methods and supervised learning methods. Without the semantic constraints of labeled data, pixels within the same category are often misclassified into different categories, leaving the output to be messy. To address the previous issue, this article proposes a fully unsupervised pipeline for training convolutional neural networks (CNNs). The pipeline combines low-level superpixels and high-level CNN semantic features for high-quality pseudolabel generation. It effectively eliminates the misclassified pixels by voting within the superpixel blob while preserving the sharpness of edges. With the training process of the model, the quality of the generated labels is getting improved. Experiments on airborne [experimental airborne SAR system from Germany (ESAR)/airborne synthetic aperture radar from America (AIRSAR)] and spaceborne (RadarSat2) PolSAR images prove the effectiveness of the proposed method (measured with overall accuracy (OA), average accuracy (AA), and Kappa metrics). Our method outperforms the previous unsupervised methods (H/alpha-Wishart, SM-Wishart, FDD-H, DEC, and VQC-CAE) with a large margin and even has comparable performance to the supervised CNN model [fully CNN (FCN)].</description><subject>Accuracy</subject><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN) model</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Methods</subject><subject>multiscale (MS) semantic feature</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>polarimetric synthetic aperture radar (PolSAR) image</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>Semantics</subject><subject>Submarine pipelines</subject><subject>superpixel segmentation</subject><subject>Supervised learning</subject><subject>Synthetic aperture radar</subject><subject>Teaching methods</subject><subject>Training</subject><subject>unsupervised classification</subject><subject>Unsupervised learning</subject><subject>Voting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJNmPeFsWrUKp0g89hmw3qanb3ZpsRf-9WVo8Dcy8zwzzIHQNZARAxN1iPJuPKKF0xCBNBSEnaABxnEUk4fwUDQiIJKKZoOfowvsNIcBjSAfIvNum0Q4v1Kf2OK_re5zj-X6n3c7-6BrnttIVfms726zDeN06231ssWkD4pRt-vay8T3wbX2Ivrb1PJ_hYjrFRa28t8Zq5y_RmVG111fHOkTLx4dF8RRNXsbPRT6JVpSyLgJBK0FiFldpqqCKOdDKsIwDMMLSJElYSTLFE9Alz8rwgdFlLLRRZWAM5WyIbg97d6792mvfyU27d004KWmSxoSz8HdIwSG1cq33Thu5c3ar3K8EInudstcpe53yqDMwNwfGaq3_8yLNgEPG_gBVJ2-A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zuo, Yixin</creator><creator>Guo, Jiayi</creator><creator>Zhang, Yueting</creator><creator>Hu, Yuxin</creator><creator>Lei, Bin</creator><creator>Qiu, Xiaolan</creator><creator>Ding, Chibiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8517-3415</orcidid><orcidid>https://orcid.org/0000-0002-3052-4222</orcidid></search><sort><creationdate>2022</creationdate><title>Winner Takes All: A Superpixel Aided Voting Algorithm for Training Unsupervised PolSAR CNN Classifiers</title><author>Zuo, Yixin ; Guo, Jiayi ; Zhang, Yueting ; Hu, Yuxin ; Lei, Bin ; Qiu, Xiaolan ; Ding, Chibiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN) model</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Methods</topic><topic>multiscale (MS) semantic feature</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>polarimetric synthetic aperture radar (PolSAR) image</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>Semantics</topic><topic>Submarine pipelines</topic><topic>superpixel segmentation</topic><topic>Supervised learning</topic><topic>Synthetic aperture radar</topic><topic>Teaching methods</topic><topic>Training</topic><topic>unsupervised classification</topic><topic>Unsupervised learning</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Yixin</creatorcontrib><creatorcontrib>Guo, Jiayi</creatorcontrib><creatorcontrib>Zhang, Yueting</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><creatorcontrib>Lei, Bin</creatorcontrib><creatorcontrib>Qiu, Xiaolan</creatorcontrib><creatorcontrib>Ding, Chibiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Yixin</au><au>Guo, Jiayi</au><au>Zhang, Yueting</au><au>Hu, Yuxin</au><au>Lei, Bin</au><au>Qiu, Xiaolan</au><au>Ding, Chibiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Winner Takes All: A Superpixel Aided Voting Algorithm for Training Unsupervised PolSAR CNN Classifiers</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Unsupervised methods play an essential role in polarimetric synthetic aperture radar (PolSAR) image classification, where labeled data are difficult to obtain. However, there is still a large gap between existing unsupervised learning methods and supervised learning methods. Without the semantic constraints of labeled data, pixels within the same category are often misclassified into different categories, leaving the output to be messy. To address the previous issue, this article proposes a fully unsupervised pipeline for training convolutional neural networks (CNNs). The pipeline combines low-level superpixels and high-level CNN semantic features for high-quality pseudolabel generation. It effectively eliminates the misclassified pixels by voting within the superpixel blob while preserving the sharpness of edges. With the training process of the model, the quality of the generated labels is getting improved. Experiments on airborne [experimental airborne SAR system from Germany (ESAR)/airborne synthetic aperture radar from America (AIRSAR)] and spaceborne (RadarSat2) PolSAR images prove the effectiveness of the proposed method (measured with overall accuracy (OA), average accuracy (AA), and Kappa metrics). Our method outperforms the previous unsupervised methods (H/alpha-Wishart, SM-Wishart, FDD-H, DEC, and VQC-CAE) with a large margin and even has comparable performance to the supervised CNN model [fully CNN (FCN)].</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3177900</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8517-3415</orcidid><orcidid>https://orcid.org/0000-0002-3052-4222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-19
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2675043145
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Airborne radar
Airborne remote sensing
Algorithms
Artificial neural networks
Convolutional neural network (CNN) model
Feature extraction
Image classification
Methods
multiscale (MS) semantic feature
Neural networks
Pixels
polarimetric synthetic aperture radar (PolSAR) image
Radar
Radar imaging
SAR (radar)
Scattering
Semantics
Submarine pipelines
superpixel segmentation
Supervised learning
Synthetic aperture radar
Teaching methods
Training
unsupervised classification
Unsupervised learning
Voting
title Winner Takes All: A Superpixel Aided Voting Algorithm for Training Unsupervised PolSAR CNN Classifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Winner%20Takes%20All:%20A%20Superpixel%20Aided%20Voting%20Algorithm%20for%20Training%20Unsupervised%20PolSAR%20CNN%20Classifiers&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zuo,%20Yixin&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3177900&rft_dat=%3Cproquest_cross%3E2675043145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-192d90535d77a1d5412df3841130376663b08a461eb48b451feb59efab535f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675043145&rft_id=info:pmid/&rft_ieee_id=9781418&rfr_iscdi=true