Loading…

On the consistency of coastal sea-level measurements in the Mediterranean Sea from tide gauges and satellite radar altimetry

We assess the consistency of sea-level variability derived from tide-gauge (TG) and satellite radar altimeter (ALT) data acquired along the coasts of the Mediterranean Sea. For a coherent comparison between these techniques, we use GNSS observations to characterize the local vertical land movement e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geodesy 2022-06, Vol.96 (6), Article 41
Main Authors: Bruni, Sara, Fenoglio, Luciana, Raicich, Fabio, Zerbini, Susanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We assess the consistency of sea-level variability derived from tide-gauge (TG) and satellite radar altimeter (ALT) data acquired along the coasts of the Mediterranean Sea. For a coherent comparison between these techniques, we use GNSS observations to characterize the local vertical land movement embedded in TG records, but not affecting ALT data. We first investigate the performance of CMEMS, a gridded altimeter product covering the period 1993–2019. TG and GNSS series are not required to cover the whole altimeter period. The inter-technique comparison reveals good agreement at annual and semi-annual scales, but also the occasional occurrence of nonlinear discrepancies impacting trend estimation. Large-scale patterns of variability are observed in the Ionian region and along the continental shores from the Alboran to the Adriatic Sea. The estimates of linear trends based on TG + GNSS or CMEMS observations are found consistent within 1σ at 27/45 sites, with the best agreement in the Western Mediterranean and Adriatic Seas. We also consider the X-TRACK/ALES altimeter dataset, provided along the tracks of the Jason missions (2002–2018) and optimized for coastal applications. In this case, we identify only 12 sites suitable for the comparison. The results show that inter-technique consistency is impacted by the length of the series used in the comparison. Optimum agreement between X-TRACK/ALES and TG + GNSS trends is reached at the two sites closer to a satellite track. However, we find sites where X-TRACK/ALES-derived sea-level trends present suspicious along-track variations at 
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-022-01626-9