Loading…
Spatiotemporal analysis of multi-pesticide residues in the largest Central European shallow lake, Lake Balaton, and its sub-catchment area
Background The present study aimed to gain a comprehensive knowledge of the presence and environmental risks of pesticide and repellent residues in Lake Balaton and its sub-catchment area (Hungary). A unique analysis of 439 active substances and 17 metabolites was carried out on surface waters and o...
Saved in:
Published in: | Environmental sciences Europe 2022-12, Vol.34 (1), Article 50 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The present study aimed to gain a comprehensive knowledge of the presence and environmental risks of pesticide and repellent residues in Lake Balaton and its sub-catchment area (Hungary). A unique analysis of 439 active substances and 17 metabolites was carried out on surface waters and one effluent wastewater as the only direct discharge into Lake Balaton from June 2017 until August 2020. Altogether 203 water- and 85 sediment samples were collected and analysed during the 3-year monitoring period. To determine the environmental risks of the detected pesticides to aquatic ecosystems, environmental risk assessment (ERA) was carried out using two approaches (worst- and general-case scenarios).
Results
Fifty-two pesticides and one insect repellent were detected, of which 26 belonged to herbicides (24 active substances and two metabolites), 15 to fungicides (15 active substances), and 11 to insecticides (eight active substances and three metabolites), of which only nine of the total analysed compounds are listed to be monitored in surface waters with threshold limit values (TLVs). The most frequently detected compounds were terbuthylazine, diethyltoluamide (DEET), desethyl-atrazine, and metolachlor. Glyphosate, aminomethylphosphonic acid (AMPA), and DEET were found with the highest concentrations of 3.0, 2.0, and 1.57 µg/L, respectively. The pesticide exposures were higher during the summer periods indicating a stable seasonal pattern. According to the performed ERA, the calculated Risk Quotients (RQs) indicated 18 compounds with a high level of risk including nine that had been banned for at least a decade.
Discussion
This study expands knowledge on the spatiotemporal occurrence of pesticides in inland surface waters and highlights the need to consider widening the number of analysed pesticides beyond the European Water Framework Directive (EWFD). According to our results, additional authority and legislation procedures should come into force for pesticides not indexed in the priority European Union Watch List. |
---|---|
ISSN: | 2190-4707 2190-4715 |
DOI: | 10.1186/s12302-022-00630-2 |