Loading…

On the Implementation of Postprocessing of Runoff Forecast Ensembles

Different postprocessing techniques are frequently employed to improve the outcome of ensemble forecasting models. The main reason is to compensate for biases caused by errors in model structure or initial conditions, and as a correction for under- or overdispersed ensembles. Here we use the ensembl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrometeorology 2021-10, Vol.22 (10), p.2731-2749
Main Authors: Skøien, Jon Olav, Bogner, Konrad, Salamon, Peter, Wetterhall, Fredrik
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2749
container_issue 10
container_start_page 2731
container_title Journal of hydrometeorology
container_volume 22
creator Skøien, Jon Olav
Bogner, Konrad
Salamon, Peter
Wetterhall, Fredrik
description Different postprocessing techniques are frequently employed to improve the outcome of ensemble forecasting models. The main reason is to compensate for biases caused by errors in model structure or initial conditions, and as a correction for under- or overdispersed ensembles. Here we use the ensemble model output statistics method to postprocess the ensemble output from a continental-scale hydrological model, LISFLOOD, as used in the European Flood Awareness System (EFAS). We develop a method for local calibration and interpolation of the postprocessing parameters and compare it with a more traditional global calibration approach for 678 stations in Europe based on longterm observations of runoff and meteorological variables. For the global calibration we also test a reduced model with only a variance inflation factor. Whereas the postprocessing improved the results for the first 1–2 days lead time, the improvement was less for increasing lead times of the verification period. This was the case both for the local and global calibration methods. As the postprocessing is based on assumptions about the distribution of forecast errors, we also present an analysis of the ensemble output that provides some indications of what to expect from the postprocessing.
doi_str_mv 10.1175/JHM-D-21-0008.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2675956777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27202231</jstor_id><sourcerecordid>27202231</sourcerecordid><originalsourceid>FETCH-LOGICAL-j135t-484722febe4984d33fbb889a10b621e77d1a73fff8ad20660f4d4229faab7e7f3</originalsourceid><addsrcrecordid>eNo9jk1LAzEYhIMoWKtnT8KC59S8-dg3e5R-2EqlIgrelmw30S7dZN2kB_-9KxVPMwwPM0PINbAJAKq7x-UTnVEOlDGmJ3BCRqC4oqgknP579X5OLmJsBkYWoEdktvFZ-rTZqu32trU-mbQLPgsuew4xdX3Y2hh3_uM3eTn44Fy2CL3dmpiyuY-2rfY2XpIzZ_bRXv3pmLwt5q_TJV1vHlbT-zVtQKhEpZbIubOVlYWWtRCuqrQuDLAq52ARazAonHPa1JzlOXOylpwXzpgKLToxJrfH3uHX18HGVDbh0PthsuQ5qkLliDhQN0eqiSn0ZdfvWtN_lxw541yA-AGuQla3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675956777</pqid></control><display><type>article</type><title>On the Implementation of Postprocessing of Runoff Forecast Ensembles</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Skøien, Jon Olav ; Bogner, Konrad ; Salamon, Peter ; Wetterhall, Fredrik</creator><creatorcontrib>Skøien, Jon Olav ; Bogner, Konrad ; Salamon, Peter ; Wetterhall, Fredrik</creatorcontrib><description>Different postprocessing techniques are frequently employed to improve the outcome of ensemble forecasting models. The main reason is to compensate for biases caused by errors in model structure or initial conditions, and as a correction for under- or overdispersed ensembles. Here we use the ensemble model output statistics method to postprocess the ensemble output from a continental-scale hydrological model, LISFLOOD, as used in the European Flood Awareness System (EFAS). We develop a method for local calibration and interpolation of the postprocessing parameters and compare it with a more traditional global calibration approach for 678 stations in Europe based on longterm observations of runoff and meteorological variables. For the global calibration we also test a reduced model with only a variance inflation factor. Whereas the postprocessing improved the results for the first 1–2 days lead time, the improvement was less for increasing lead times of the verification period. This was the case both for the local and global calibration methods. As the postprocessing is based on assumptions about the distribution of forecast errors, we also present an analysis of the ensemble output that provides some indications of what to expect from the postprocessing.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-21-0008.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Calibration ; Economic forecasting ; Ensemble forecasting ; Errors ; Forecast errors ; Hydrologic models ; Hydrology ; Initial conditions ; Interpolation ; Lead time ; Mathematical models ; Methods ; Modelling ; Runoff ; Runoff forecasting ; Statistical analysis ; Statistical methods ; Stream flow ; Variables ; Weather forecasting</subject><ispartof>Journal of hydrometeorology, 2021-10, Vol.22 (10), p.2731-2749</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27202231$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27202231$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Skøien, Jon Olav</creatorcontrib><creatorcontrib>Bogner, Konrad</creatorcontrib><creatorcontrib>Salamon, Peter</creatorcontrib><creatorcontrib>Wetterhall, Fredrik</creatorcontrib><title>On the Implementation of Postprocessing of Runoff Forecast Ensembles</title><title>Journal of hydrometeorology</title><description>Different postprocessing techniques are frequently employed to improve the outcome of ensemble forecasting models. The main reason is to compensate for biases caused by errors in model structure or initial conditions, and as a correction for under- or overdispersed ensembles. Here we use the ensemble model output statistics method to postprocess the ensemble output from a continental-scale hydrological model, LISFLOOD, as used in the European Flood Awareness System (EFAS). We develop a method for local calibration and interpolation of the postprocessing parameters and compare it with a more traditional global calibration approach for 678 stations in Europe based on longterm observations of runoff and meteorological variables. For the global calibration we also test a reduced model with only a variance inflation factor. Whereas the postprocessing improved the results for the first 1–2 days lead time, the improvement was less for increasing lead times of the verification period. This was the case both for the local and global calibration methods. As the postprocessing is based on assumptions about the distribution of forecast errors, we also present an analysis of the ensemble output that provides some indications of what to expect from the postprocessing.</description><subject>Calibration</subject><subject>Economic forecasting</subject><subject>Ensemble forecasting</subject><subject>Errors</subject><subject>Forecast errors</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Initial conditions</subject><subject>Interpolation</subject><subject>Lead time</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Runoff</subject><subject>Runoff forecasting</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stream flow</subject><subject>Variables</subject><subject>Weather forecasting</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LAzEYhIMoWKtnT8KC59S8-dg3e5R-2EqlIgrelmw30S7dZN2kB_-9KxVPMwwPM0PINbAJAKq7x-UTnVEOlDGmJ3BCRqC4oqgknP579X5OLmJsBkYWoEdktvFZ-rTZqu32trU-mbQLPgsuew4xdX3Y2hh3_uM3eTn44Fy2CL3dmpiyuY-2rfY2XpIzZ_bRXv3pmLwt5q_TJV1vHlbT-zVtQKhEpZbIubOVlYWWtRCuqrQuDLAq52ARazAonHPa1JzlOXOylpwXzpgKLToxJrfH3uHX18HGVDbh0PthsuQ5qkLliDhQN0eqiSn0ZdfvWtN_lxw541yA-AGuQla3</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Skøien, Jon Olav</creator><creator>Bogner, Konrad</creator><creator>Salamon, Peter</creator><creator>Wetterhall, Fredrik</creator><general>American Meteorological Society</general><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211001</creationdate><title>On the Implementation of Postprocessing of Runoff Forecast Ensembles</title><author>Skøien, Jon Olav ; Bogner, Konrad ; Salamon, Peter ; Wetterhall, Fredrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j135t-484722febe4984d33fbb889a10b621e77d1a73fff8ad20660f4d4229faab7e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calibration</topic><topic>Economic forecasting</topic><topic>Ensemble forecasting</topic><topic>Errors</topic><topic>Forecast errors</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Initial conditions</topic><topic>Interpolation</topic><topic>Lead time</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Runoff</topic><topic>Runoff forecasting</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stream flow</topic><topic>Variables</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skøien, Jon Olav</creatorcontrib><creatorcontrib>Bogner, Konrad</creatorcontrib><creatorcontrib>Salamon, Peter</creatorcontrib><creatorcontrib>Wetterhall, Fredrik</creatorcontrib><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skøien, Jon Olav</au><au>Bogner, Konrad</au><au>Salamon, Peter</au><au>Wetterhall, Fredrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Implementation of Postprocessing of Runoff Forecast Ensembles</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>22</volume><issue>10</issue><spage>2731</spage><epage>2749</epage><pages>2731-2749</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Different postprocessing techniques are frequently employed to improve the outcome of ensemble forecasting models. The main reason is to compensate for biases caused by errors in model structure or initial conditions, and as a correction for under- or overdispersed ensembles. Here we use the ensemble model output statistics method to postprocess the ensemble output from a continental-scale hydrological model, LISFLOOD, as used in the European Flood Awareness System (EFAS). We develop a method for local calibration and interpolation of the postprocessing parameters and compare it with a more traditional global calibration approach for 678 stations in Europe based on longterm observations of runoff and meteorological variables. For the global calibration we also test a reduced model with only a variance inflation factor. Whereas the postprocessing improved the results for the first 1–2 days lead time, the improvement was less for increasing lead times of the verification period. This was the case both for the local and global calibration methods. As the postprocessing is based on assumptions about the distribution of forecast errors, we also present an analysis of the ensemble output that provides some indications of what to expect from the postprocessing.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-21-0008.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2021-10, Vol.22 (10), p.2731-2749
issn 1525-755X
1525-7541
language eng
recordid cdi_proquest_journals_2675956777
source JSTOR Archival Journals and Primary Sources Collection
subjects Calibration
Economic forecasting
Ensemble forecasting
Errors
Forecast errors
Hydrologic models
Hydrology
Initial conditions
Interpolation
Lead time
Mathematical models
Methods
Modelling
Runoff
Runoff forecasting
Statistical analysis
Statistical methods
Stream flow
Variables
Weather forecasting
title On the Implementation of Postprocessing of Runoff Forecast Ensembles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Implementation%20of%20Postprocessing%20of%20Runoff%20Forecast%20Ensembles&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Sk%C3%B8ien,%20Jon%20Olav&rft.date=2021-10-01&rft.volume=22&rft.issue=10&rft.spage=2731&rft.epage=2749&rft.pages=2731-2749&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-21-0008.1&rft_dat=%3Cjstor_proqu%3E27202231%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j135t-484722febe4984d33fbb889a10b621e77d1a73fff8ad20660f4d4229faab7e7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675956777&rft_id=info:pmid/&rft_jstor_id=27202231&rfr_iscdi=true