Loading…

Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation

Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. Th...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry frontiers 2022-06, Vol.9 (12), p.2862-2868
Main Authors: Chao-Long, Chen, Hai-Ying, Wang, Jun-Ping, Li, La-Sheng, Long, Xiang-Jian Kong, Lan-Sun, Zheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2868
container_issue 12
container_start_page 2862
container_title Inorganic chemistry frontiers
container_volume 9
creator Chao-Long, Chen
Hai-Ying, Wang
Jun-Ping, Li
La-Sheng, Long
Xiang-Jian Kong
Lan-Sun, Zheng
description Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.
doi_str_mv 10.1039/d2qi00628f
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2675987741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675987741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-b9840c49906f5a656dd828a819d9e6b63c11d20a2ea46566d1ef86ee35b5a4d63</originalsourceid><addsrcrecordid>eNo9jc1KAzEcxIMoWGovPkHA82q-NzmW4keh0Eu9WrKbf9rINtluUtCb7-Ab-iSuKJ5mmB8zg9A1JbeUcHPn2DEQopj2Z2jCiGQVlZKf_3shL9Es59CQMSCGknqCXuY5w6HpQtzhzsaytzE4-Pr4LIONOZSQIj5AsR1uu1MuMGQ8JpuwZtinAff7VFJrR_5eQotjKEPaQcQ-vNmf7hW68LbLMPvTKXp-uN8snqrV-nG5mK-qnmpeqsZoQVphDFFeWiWVc5ppq6lxBlSjeEupY8QysGKkylHwWgFw2UgrnOJTdPO72w_peIJctq_pNMTxcstULY2ua0H5N6reWIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675987741</pqid></control><display><type>article</type><title>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</title><source>Royal Society of Chemistry</source><creator>Chao-Long, Chen ; Hai-Ying, Wang ; Jun-Ping, Li ; La-Sheng, Long ; Xiang-Jian Kong ; Lan-Sun, Zheng</creator><creatorcontrib>Chao-Long, Chen ; Hai-Ying, Wang ; Jun-Ping, Li ; La-Sheng, Long ; Xiang-Jian Kong ; Lan-Sun, Zheng</creatorcontrib><description>Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d2qi00628f</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ammonia ; Catalysts ; Electron paramagnetic resonance ; Energy consumption ; Environmental protection ; Inorganic chemistry ; Metal clusters ; Nitrogenation ; Oxygen enrichment ; Photocatalysis ; Titanium dioxide ; Transition metals ; Vacancies</subject><ispartof>Inorganic chemistry frontiers, 2022-06, Vol.9 (12), p.2862-2868</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chao-Long, Chen</creatorcontrib><creatorcontrib>Hai-Ying, Wang</creatorcontrib><creatorcontrib>Jun-Ping, Li</creatorcontrib><creatorcontrib>La-Sheng, Long</creatorcontrib><creatorcontrib>Xiang-Jian Kong</creatorcontrib><creatorcontrib>Lan-Sun, Zheng</creatorcontrib><title>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</title><title>Inorganic chemistry frontiers</title><description>Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.</description><subject>Ammonia</subject><subject>Catalysts</subject><subject>Electron paramagnetic resonance</subject><subject>Energy consumption</subject><subject>Environmental protection</subject><subject>Inorganic chemistry</subject><subject>Metal clusters</subject><subject>Nitrogenation</subject><subject>Oxygen enrichment</subject><subject>Photocatalysis</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><subject>Vacancies</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jc1KAzEcxIMoWGovPkHA82q-NzmW4keh0Eu9WrKbf9rINtluUtCb7-Ab-iSuKJ5mmB8zg9A1JbeUcHPn2DEQopj2Z2jCiGQVlZKf_3shL9Es59CQMSCGknqCXuY5w6HpQtzhzsaytzE4-Pr4LIONOZSQIj5AsR1uu1MuMGQ8JpuwZtinAff7VFJrR_5eQotjKEPaQcQ-vNmf7hW68LbLMPvTKXp-uN8snqrV-nG5mK-qnmpeqsZoQVphDFFeWiWVc5ppq6lxBlSjeEupY8QysGKkylHwWgFw2UgrnOJTdPO72w_peIJctq_pNMTxcstULY2ua0H5N6reWIA</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Chao-Long, Chen</creator><creator>Hai-Ying, Wang</creator><creator>Jun-Ping, Li</creator><creator>La-Sheng, Long</creator><creator>Xiang-Jian Kong</creator><creator>Lan-Sun, Zheng</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220614</creationdate><title>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</title><author>Chao-Long, Chen ; Hai-Ying, Wang ; Jun-Ping, Li ; La-Sheng, Long ; Xiang-Jian Kong ; Lan-Sun, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-b9840c49906f5a656dd828a819d9e6b63c11d20a2ea46566d1ef86ee35b5a4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Catalysts</topic><topic>Electron paramagnetic resonance</topic><topic>Energy consumption</topic><topic>Environmental protection</topic><topic>Inorganic chemistry</topic><topic>Metal clusters</topic><topic>Nitrogenation</topic><topic>Oxygen enrichment</topic><topic>Photocatalysis</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao-Long, Chen</creatorcontrib><creatorcontrib>Hai-Ying, Wang</creatorcontrib><creatorcontrib>Jun-Ping, Li</creatorcontrib><creatorcontrib>La-Sheng, Long</creatorcontrib><creatorcontrib>Xiang-Jian Kong</creatorcontrib><creatorcontrib>Lan-Sun, Zheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao-Long, Chen</au><au>Hai-Ying, Wang</au><au>Jun-Ping, Li</au><au>La-Sheng, Long</au><au>Xiang-Jian Kong</au><au>Lan-Sun, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-06-14</date><risdate>2022</risdate><volume>9</volume><issue>12</issue><spage>2862</spage><epage>2868</epage><pages>2862-2868</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qi00628f</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2022-06, Vol.9 (12), p.2862-2868
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2675987741
source Royal Society of Chemistry
subjects Ammonia
Catalysts
Electron paramagnetic resonance
Energy consumption
Environmental protection
Inorganic chemistry
Metal clusters
Nitrogenation
Oxygen enrichment
Photocatalysis
Titanium dioxide
Transition metals
Vacancies
title Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembling%20lanthanide%E2%80%93transition%20metal%20clusters%20on%20TiO2%20for%20photocatalytic%20nitrogen%20fixation&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Chao-Long,%20Chen&rft.date=2022-06-14&rft.volume=9&rft.issue=12&rft.spage=2862&rft.epage=2868&rft.pages=2862-2868&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d2qi00628f&rft_dat=%3Cproquest%3E2675987741%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-b9840c49906f5a656dd828a819d9e6b63c11d20a2ea46566d1ef86ee35b5a4d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675987741&rft_id=info:pmid/&rfr_iscdi=true