Loading…
Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation
Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. Th...
Saved in:
Published in: | Inorganic chemistry frontiers 2022-06, Vol.9 (12), p.2862-2868 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2868 |
container_issue | 12 |
container_start_page | 2862 |
container_title | Inorganic chemistry frontiers |
container_volume | 9 |
creator | Chao-Long, Chen Hai-Ying, Wang Jun-Ping, Li La-Sheng, Long Xiang-Jian Kong Lan-Sun, Zheng |
description | Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering. |
doi_str_mv | 10.1039/d2qi00628f |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2675987741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675987741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-b9840c49906f5a656dd828a819d9e6b63c11d20a2ea46566d1ef86ee35b5a4d63</originalsourceid><addsrcrecordid>eNo9jc1KAzEcxIMoWGovPkHA82q-NzmW4keh0Eu9WrKbf9rINtluUtCb7-Ab-iSuKJ5mmB8zg9A1JbeUcHPn2DEQopj2Z2jCiGQVlZKf_3shL9Es59CQMSCGknqCXuY5w6HpQtzhzsaytzE4-Pr4LIONOZSQIj5AsR1uu1MuMGQ8JpuwZtinAff7VFJrR_5eQotjKEPaQcQ-vNmf7hW68LbLMPvTKXp-uN8snqrV-nG5mK-qnmpeqsZoQVphDFFeWiWVc5ppq6lxBlSjeEupY8QysGKkylHwWgFw2UgrnOJTdPO72w_peIJctq_pNMTxcstULY2ua0H5N6reWIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675987741</pqid></control><display><type>article</type><title>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</title><source>Royal Society of Chemistry</source><creator>Chao-Long, Chen ; Hai-Ying, Wang ; Jun-Ping, Li ; La-Sheng, Long ; Xiang-Jian Kong ; Lan-Sun, Zheng</creator><creatorcontrib>Chao-Long, Chen ; Hai-Ying, Wang ; Jun-Ping, Li ; La-Sheng, Long ; Xiang-Jian Kong ; Lan-Sun, Zheng</creatorcontrib><description>Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d2qi00628f</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ammonia ; Catalysts ; Electron paramagnetic resonance ; Energy consumption ; Environmental protection ; Inorganic chemistry ; Metal clusters ; Nitrogenation ; Oxygen enrichment ; Photocatalysis ; Titanium dioxide ; Transition metals ; Vacancies</subject><ispartof>Inorganic chemistry frontiers, 2022-06, Vol.9 (12), p.2862-2868</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chao-Long, Chen</creatorcontrib><creatorcontrib>Hai-Ying, Wang</creatorcontrib><creatorcontrib>Jun-Ping, Li</creatorcontrib><creatorcontrib>La-Sheng, Long</creatorcontrib><creatorcontrib>Xiang-Jian Kong</creatorcontrib><creatorcontrib>Lan-Sun, Zheng</creatorcontrib><title>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</title><title>Inorganic chemistry frontiers</title><description>Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.</description><subject>Ammonia</subject><subject>Catalysts</subject><subject>Electron paramagnetic resonance</subject><subject>Energy consumption</subject><subject>Environmental protection</subject><subject>Inorganic chemistry</subject><subject>Metal clusters</subject><subject>Nitrogenation</subject><subject>Oxygen enrichment</subject><subject>Photocatalysis</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><subject>Vacancies</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jc1KAzEcxIMoWGovPkHA82q-NzmW4keh0Eu9WrKbf9rINtluUtCb7-Ab-iSuKJ5mmB8zg9A1JbeUcHPn2DEQopj2Z2jCiGQVlZKf_3shL9Es59CQMSCGknqCXuY5w6HpQtzhzsaytzE4-Pr4LIONOZSQIj5AsR1uu1MuMGQ8JpuwZtinAff7VFJrR_5eQotjKEPaQcQ-vNmf7hW68LbLMPvTKXp-uN8snqrV-nG5mK-qnmpeqsZoQVphDFFeWiWVc5ppq6lxBlSjeEupY8QysGKkylHwWgFw2UgrnOJTdPO72w_peIJctq_pNMTxcstULY2ua0H5N6reWIA</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Chao-Long, Chen</creator><creator>Hai-Ying, Wang</creator><creator>Jun-Ping, Li</creator><creator>La-Sheng, Long</creator><creator>Xiang-Jian Kong</creator><creator>Lan-Sun, Zheng</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220614</creationdate><title>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</title><author>Chao-Long, Chen ; Hai-Ying, Wang ; Jun-Ping, Li ; La-Sheng, Long ; Xiang-Jian Kong ; Lan-Sun, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-b9840c49906f5a656dd828a819d9e6b63c11d20a2ea46566d1ef86ee35b5a4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Catalysts</topic><topic>Electron paramagnetic resonance</topic><topic>Energy consumption</topic><topic>Environmental protection</topic><topic>Inorganic chemistry</topic><topic>Metal clusters</topic><topic>Nitrogenation</topic><topic>Oxygen enrichment</topic><topic>Photocatalysis</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao-Long, Chen</creatorcontrib><creatorcontrib>Hai-Ying, Wang</creatorcontrib><creatorcontrib>Jun-Ping, Li</creatorcontrib><creatorcontrib>La-Sheng, Long</creatorcontrib><creatorcontrib>Xiang-Jian Kong</creatorcontrib><creatorcontrib>Lan-Sun, Zheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao-Long, Chen</au><au>Hai-Ying, Wang</au><au>Jun-Ping, Li</au><au>La-Sheng, Long</au><au>Xiang-Jian Kong</au><au>Lan-Sun, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-06-14</date><risdate>2022</risdate><volume>9</volume><issue>12</issue><spage>2862</spage><epage>2868</epage><pages>2862-2868</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of lanthanide–transition metal (4f–3d) clusters Ln52Ni56 on the TiO2 surface. The investigation of photocatalytic nitrogen fixation showed that Ln52Ni56 not only acts as a tool to improve charge separation but also enriches oxygen vacancies. Multiple synergies resulted in a photocatalytic nitrogen fixation efficiency of up to 800 μmol h−1 g−1 with the direct utilization of nitrogen and water without any sacrificial agents or co-catalysts. Electron paramagnetic resonance spectroscopy was conducted to investigate the mechanism of oxygen vacancy inactivation and recovery. This study provides a reference for the construction of a photochemical nitrogen fixation catalyst driven by defect engineering.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qi00628f</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2022-06, Vol.9 (12), p.2862-2868 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2675987741 |
source | Royal Society of Chemistry |
subjects | Ammonia Catalysts Electron paramagnetic resonance Energy consumption Environmental protection Inorganic chemistry Metal clusters Nitrogenation Oxygen enrichment Photocatalysis Titanium dioxide Transition metals Vacancies |
title | Assembling lanthanide–transition metal clusters on TiO2 for photocatalytic nitrogen fixation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembling%20lanthanide%E2%80%93transition%20metal%20clusters%20on%20TiO2%20for%20photocatalytic%20nitrogen%20fixation&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Chao-Long,%20Chen&rft.date=2022-06-14&rft.volume=9&rft.issue=12&rft.spage=2862&rft.epage=2868&rft.pages=2862-2868&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d2qi00628f&rft_dat=%3Cproquest%3E2675987741%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-b9840c49906f5a656dd828a819d9e6b63c11d20a2ea46566d1ef86ee35b5a4d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675987741&rft_id=info:pmid/&rfr_iscdi=true |