Loading…
Thermally controlled optical resonator for vacuum squeezed states separation
Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent...
Saved in:
Published in: | Applied optics (2004) 2022-06, Vol.61 (17), p.5226 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3 |
container_end_page | |
container_issue | 17 |
container_start_page | 5226 |
container_title | Applied optics (2004) |
container_volume | 61 |
creator | Nguyen, C. Bréelle, E. Barsuglia, M. Capocasa, E. De Laurentis, M. Sequino, V. Sorrentino, F. |
description | Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred. |
doi_str_mv | 10.1364/AO.459190 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676136436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676136436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv8GCJw9bM5kk2xxL8R8UeqngLUyzWWzZbtYkK9RP75Z6eLx3-PFmeIzdA58Bavm0WM-kMmD4BZsIUKpE0OqSTcZoShDzz2t2k9Kec1TSVBO22nz5eKC2PRYudDmGtvV1Efq8c9QW0afQUQ6xaEb9kBuGQ5G-B-9_Ryplyj4VyfcUKe9Cd8uuGmqTv_v3Kft4ed4s38rV-vV9uViVDsHk0nghtgpQgql44yU4LYUQCmpXy7mpQc9REUkPQnCqFSgkhR4rjVsl5Ban7OHc28cwPpOy3YchduNJK3SlT0OgHqnHM-ViSCn6xvZxd6B4tMDtibGLtT2PhX8Mr1uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676136436</pqid></control><display><type>article</type><title>Thermally controlled optical resonator for vacuum squeezed states separation</title><source>Optica Publishing Group Journals</source><creator>Nguyen, C. ; Bréelle, E. ; Barsuglia, M. ; Capocasa, E. ; De Laurentis, M. ; Sequino, V. ; Sorrentino, F.</creator><creatorcontrib>Nguyen, C. ; Bréelle, E. ; Barsuglia, M. ; Capocasa, E. ; De Laurentis, M. ; Sequino, V. ; Sorrentino, F.</creatorcontrib><description>Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.459190</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Broadband ; Compressing ; Detectors ; Entangled states ; Etalons ; Gravitational waves ; Optical resonators ; Quantum entanglement ; Sensors ; Squeezed states (quantum theory)</subject><ispartof>Applied optics (2004), 2022-06, Vol.61 (17), p.5226</ispartof><rights>Copyright Optical Society of America Jun 10, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3</cites><orcidid>0000-0002-8137-4797 ; 0000-0001-8623-0306 ; 0000-0003-3762-6958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, C.</creatorcontrib><creatorcontrib>Bréelle, E.</creatorcontrib><creatorcontrib>Barsuglia, M.</creatorcontrib><creatorcontrib>Capocasa, E.</creatorcontrib><creatorcontrib>De Laurentis, M.</creatorcontrib><creatorcontrib>Sequino, V.</creatorcontrib><creatorcontrib>Sorrentino, F.</creatorcontrib><title>Thermally controlled optical resonator for vacuum squeezed states separation</title><title>Applied optics (2004)</title><description>Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.</description><subject>Broadband</subject><subject>Compressing</subject><subject>Detectors</subject><subject>Entangled states</subject><subject>Etalons</subject><subject>Gravitational waves</subject><subject>Optical resonators</subject><subject>Quantum entanglement</subject><subject>Sensors</subject><subject>Squeezed states (quantum theory)</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv8GCJw9bM5kk2xxL8R8UeqngLUyzWWzZbtYkK9RP75Z6eLx3-PFmeIzdA58Bavm0WM-kMmD4BZsIUKpE0OqSTcZoShDzz2t2k9Kec1TSVBO22nz5eKC2PRYudDmGtvV1Efq8c9QW0afQUQ6xaEb9kBuGQ5G-B-9_Ryplyj4VyfcUKe9Cd8uuGmqTv_v3Kft4ed4s38rV-vV9uViVDsHk0nghtgpQgql44yU4LYUQCmpXy7mpQc9REUkPQnCqFSgkhR4rjVsl5Ban7OHc28cwPpOy3YchduNJK3SlT0OgHqnHM-ViSCn6xvZxd6B4tMDtibGLtT2PhX8Mr1uw</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Nguyen, C.</creator><creator>Bréelle, E.</creator><creator>Barsuglia, M.</creator><creator>Capocasa, E.</creator><creator>De Laurentis, M.</creator><creator>Sequino, V.</creator><creator>Sorrentino, F.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8137-4797</orcidid><orcidid>https://orcid.org/0000-0001-8623-0306</orcidid><orcidid>https://orcid.org/0000-0003-3762-6958</orcidid></search><sort><creationdate>20220610</creationdate><title>Thermally controlled optical resonator for vacuum squeezed states separation</title><author>Nguyen, C. ; Bréelle, E. ; Barsuglia, M. ; Capocasa, E. ; De Laurentis, M. ; Sequino, V. ; Sorrentino, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broadband</topic><topic>Compressing</topic><topic>Detectors</topic><topic>Entangled states</topic><topic>Etalons</topic><topic>Gravitational waves</topic><topic>Optical resonators</topic><topic>Quantum entanglement</topic><topic>Sensors</topic><topic>Squeezed states (quantum theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, C.</creatorcontrib><creatorcontrib>Bréelle, E.</creatorcontrib><creatorcontrib>Barsuglia, M.</creatorcontrib><creatorcontrib>Capocasa, E.</creatorcontrib><creatorcontrib>De Laurentis, M.</creatorcontrib><creatorcontrib>Sequino, V.</creatorcontrib><creatorcontrib>Sorrentino, F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, C.</au><au>Bréelle, E.</au><au>Barsuglia, M.</au><au>Capocasa, E.</au><au>De Laurentis, M.</au><au>Sequino, V.</au><au>Sorrentino, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally controlled optical resonator for vacuum squeezed states separation</atitle><jtitle>Applied optics (2004)</jtitle><date>2022-06-10</date><risdate>2022</risdate><volume>61</volume><issue>17</issue><spage>5226</spage><pages>5226-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.459190</doi><orcidid>https://orcid.org/0000-0002-8137-4797</orcidid><orcidid>https://orcid.org/0000-0001-8623-0306</orcidid><orcidid>https://orcid.org/0000-0003-3762-6958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2022-06, Vol.61 (17), p.5226 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_journals_2676136436 |
source | Optica Publishing Group Journals |
subjects | Broadband Compressing Detectors Entangled states Etalons Gravitational waves Optical resonators Quantum entanglement Sensors Squeezed states (quantum theory) |
title | Thermally controlled optical resonator for vacuum squeezed states separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20controlled%20optical%20resonator%20for%20vacuum%20squeezed%20states%20separation&rft.jtitle=Applied%20optics%20(2004)&rft.au=Nguyen,%20C.&rft.date=2022-06-10&rft.volume=61&rft.issue=17&rft.spage=5226&rft.pages=5226-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.459190&rft_dat=%3Cproquest_cross%3E2676136436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676136436&rft_id=info:pmid/&rfr_iscdi=true |