Loading…

Thermally controlled optical resonator for vacuum squeezed states separation

Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2022-06, Vol.61 (17), p.5226
Main Authors: Nguyen, C., Bréelle, E., Barsuglia, M., Capocasa, E., De Laurentis, M., Sequino, V., Sorrentino, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3
container_end_page
container_issue 17
container_start_page 5226
container_title Applied optics (2004)
container_volume 61
creator Nguyen, C.
Bréelle, E.
Barsuglia, M.
Capocasa, E.
De Laurentis, M.
Sequino, V.
Sorrentino, F.
description Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.
doi_str_mv 10.1364/AO.459190
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676136436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676136436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv8GCJw9bM5kk2xxL8R8UeqngLUyzWWzZbtYkK9RP75Z6eLx3-PFmeIzdA58Bavm0WM-kMmD4BZsIUKpE0OqSTcZoShDzz2t2k9Kec1TSVBO22nz5eKC2PRYudDmGtvV1Efq8c9QW0afQUQ6xaEb9kBuGQ5G-B-9_Ryplyj4VyfcUKe9Cd8uuGmqTv_v3Kft4ed4s38rV-vV9uViVDsHk0nghtgpQgql44yU4LYUQCmpXy7mpQc9REUkPQnCqFSgkhR4rjVsl5Ban7OHc28cwPpOy3YchduNJK3SlT0OgHqnHM-ViSCn6xvZxd6B4tMDtibGLtT2PhX8Mr1uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676136436</pqid></control><display><type>article</type><title>Thermally controlled optical resonator for vacuum squeezed states separation</title><source>Optica Publishing Group Journals</source><creator>Nguyen, C. ; Bréelle, E. ; Barsuglia, M. ; Capocasa, E. ; De Laurentis, M. ; Sequino, V. ; Sorrentino, F.</creator><creatorcontrib>Nguyen, C. ; Bréelle, E. ; Barsuglia, M. ; Capocasa, E. ; De Laurentis, M. ; Sequino, V. ; Sorrentino, F.</creatorcontrib><description>Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.459190</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Broadband ; Compressing ; Detectors ; Entangled states ; Etalons ; Gravitational waves ; Optical resonators ; Quantum entanglement ; Sensors ; Squeezed states (quantum theory)</subject><ispartof>Applied optics (2004), 2022-06, Vol.61 (17), p.5226</ispartof><rights>Copyright Optical Society of America Jun 10, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3</cites><orcidid>0000-0002-8137-4797 ; 0000-0001-8623-0306 ; 0000-0003-3762-6958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, C.</creatorcontrib><creatorcontrib>Bréelle, E.</creatorcontrib><creatorcontrib>Barsuglia, M.</creatorcontrib><creatorcontrib>Capocasa, E.</creatorcontrib><creatorcontrib>De Laurentis, M.</creatorcontrib><creatorcontrib>Sequino, V.</creatorcontrib><creatorcontrib>Sorrentino, F.</creatorcontrib><title>Thermally controlled optical resonator for vacuum squeezed states separation</title><title>Applied optics (2004)</title><description>Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.</description><subject>Broadband</subject><subject>Compressing</subject><subject>Detectors</subject><subject>Entangled states</subject><subject>Etalons</subject><subject>Gravitational waves</subject><subject>Optical resonators</subject><subject>Quantum entanglement</subject><subject>Sensors</subject><subject>Squeezed states (quantum theory)</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv8GCJw9bM5kk2xxL8R8UeqngLUyzWWzZbtYkK9RP75Z6eLx3-PFmeIzdA58Bavm0WM-kMmD4BZsIUKpE0OqSTcZoShDzz2t2k9Kec1TSVBO22nz5eKC2PRYudDmGtvV1Efq8c9QW0afQUQ6xaEb9kBuGQ5G-B-9_Ryplyj4VyfcUKe9Cd8uuGmqTv_v3Kft4ed4s38rV-vV9uViVDsHk0nghtgpQgql44yU4LYUQCmpXy7mpQc9REUkPQnCqFSgkhR4rjVsl5Ban7OHc28cwPpOy3YchduNJK3SlT0OgHqnHM-ViSCn6xvZxd6B4tMDtibGLtT2PhX8Mr1uw</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Nguyen, C.</creator><creator>Bréelle, E.</creator><creator>Barsuglia, M.</creator><creator>Capocasa, E.</creator><creator>De Laurentis, M.</creator><creator>Sequino, V.</creator><creator>Sorrentino, F.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8137-4797</orcidid><orcidid>https://orcid.org/0000-0001-8623-0306</orcidid><orcidid>https://orcid.org/0000-0003-3762-6958</orcidid></search><sort><creationdate>20220610</creationdate><title>Thermally controlled optical resonator for vacuum squeezed states separation</title><author>Nguyen, C. ; Bréelle, E. ; Barsuglia, M. ; Capocasa, E. ; De Laurentis, M. ; Sequino, V. ; Sorrentino, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broadband</topic><topic>Compressing</topic><topic>Detectors</topic><topic>Entangled states</topic><topic>Etalons</topic><topic>Gravitational waves</topic><topic>Optical resonators</topic><topic>Quantum entanglement</topic><topic>Sensors</topic><topic>Squeezed states (quantum theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, C.</creatorcontrib><creatorcontrib>Bréelle, E.</creatorcontrib><creatorcontrib>Barsuglia, M.</creatorcontrib><creatorcontrib>Capocasa, E.</creatorcontrib><creatorcontrib>De Laurentis, M.</creatorcontrib><creatorcontrib>Sequino, V.</creatorcontrib><creatorcontrib>Sorrentino, F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, C.</au><au>Bréelle, E.</au><au>Barsuglia, M.</au><au>Capocasa, E.</au><au>De Laurentis, M.</au><au>Sequino, V.</au><au>Sorrentino, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally controlled optical resonator for vacuum squeezed states separation</atitle><jtitle>Applied optics (2004)</jtitle><date>2022-06-10</date><risdate>2022</risdate><volume>61</volume><issue>17</issue><spage>5226</spage><pages>5226-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein–Podolsky–Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at ω 0 and the idler field at ω 0 + Δ , must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry–Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.459190</doi><orcidid>https://orcid.org/0000-0002-8137-4797</orcidid><orcidid>https://orcid.org/0000-0001-8623-0306</orcidid><orcidid>https://orcid.org/0000-0003-3762-6958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2022-06, Vol.61 (17), p.5226
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_journals_2676136436
source Optica Publishing Group Journals
subjects Broadband
Compressing
Detectors
Entangled states
Etalons
Gravitational waves
Optical resonators
Quantum entanglement
Sensors
Squeezed states (quantum theory)
title Thermally controlled optical resonator for vacuum squeezed states separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20controlled%20optical%20resonator%20for%20vacuum%20squeezed%20states%20separation&rft.jtitle=Applied%20optics%20(2004)&rft.au=Nguyen,%20C.&rft.date=2022-06-10&rft.volume=61&rft.issue=17&rft.spage=5226&rft.pages=5226-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.459190&rft_dat=%3Cproquest_cross%3E2676136436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9e22b51341970fe41c6422251dcd489d16835aa4e1220ad5153a53e3763b524b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676136436&rft_id=info:pmid/&rfr_iscdi=true