Loading…

3-Aminobenzeneboronic acid self-assembled monolayer-modified ITO for efficient and stable OLED devices

Interface modification of indium tin oxide (ITO) is a hot research topic to obtain highly efficient and stable organic light-emitting diodes (OLEDs), and the key point is to improve the hole injection efficiency between the electrode and organic layer. In this study, we demonstrate an optimization s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2022-08, Vol.911, p.164983, Article 164983
Main Authors: Deng, Jianguo, Hu, Die, Zhang, Zizhao, Zong, Beibei, Meng, Xiangxin, Sun, Qing, Shen, Bo, Kang, Bonan, Silva, S. Ravi P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interface modification of indium tin oxide (ITO) is a hot research topic to obtain highly efficient and stable organic light-emitting diodes (OLEDs), and the key point is to improve the hole injection efficiency between the electrode and organic layer. In this study, we demonstrate an optimization strategy based on the use of 3-aminobenzeneboronic acid (3ABBA) for modifying ITO at the anode interface. The protonation reaction of boronic acid groups with oxides and hydroxyl groups forms a self-assembled monolayer (SAM). Since the ionization potential (IP) of 3ABBA-SAM is 5.44 eV, the hole injection barrier at the interface is minimized. Compared with a control device using PEDOT:PSS, the synergistic effects of the optimized 3ABBA-SAM significantly improves the maximum power efficiency (PEmax of 8.52 lm W−1) and maximum current efficiency (CEmax of 10.45 cd A−1) of the device, and the turn-on voltage is reduced by 0.2 V. In addition, effective interface modification reduces the hydrophilicity of the device and provides support for the stability of the OLED in the ambient environment. Therefore, we believe that a simple 3ABBA-SAM interface modification project can promote the development of high-performance and low-cost OLEDs. •The ITO interface modified by 3-Aminobenzeneboronic acid is reported for the first time.•The self-assembled monolayer reduces the hole injection barrier and promotes.•Compared with PEDOT:PSS as hole injection layer, the device shows better performance and lower cost.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2022.164983