Loading…
Stable Ulrich bundles on cubic fourfolds
In this paper, we give necessary and sufficient conditions for the existence of Ulrich bundles on cubic fourfold \(X\) of given rank \(r\). As consequences, we show that for every integer \(r\ge 2\) there exists a family of indecomposable rank \(r\) Ulrich bundles on the certain cubic fourfolds, dep...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hoang Le Truong Yen, Hoang Ngoc |
description | In this paper, we give necessary and sufficient conditions for the existence of Ulrich bundles on cubic fourfold \(X\) of given rank \(r\). As consequences, we show that for every integer \(r\ge 2\) there exists a family of indecomposable rank \(r\) Ulrich bundles on the certain cubic fourfolds, depending roughly on \(r\) parameters, and in particular they are of wild representation type; special surfaces on the cubic fourfolds are explicitly constructed by Macaulay2; a new \(19\)-dimensional family of projective ten-dimensional irreducible holomorphic symplectic manifolds associated to a certain cubic fourfold is constructed; and for certain cubic fourfold \(X\), there exist arithmetically Cohen-Macaulay smooth surface \(Y \subset X\) which are not an intersection \(X \cap T\) for a codimension two subvariety \(T \subset \Bbb P^5\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2676380536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676380536</sourcerecordid><originalsourceid>FETCH-proquest_journals_26763805363</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCC5JTMpJVQjNKcpMzlBIKs1LyUktVsjPU0guTcpMVkjLLy1Ky89JKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWUCleUCpeKDhZsYWBqbGZsbEqQIAmN0wDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676380536</pqid></control><display><type>article</type><title>Stable Ulrich bundles on cubic fourfolds</title><source>Publicly Available Content (ProQuest)</source><creator>Hoang Le Truong ; Yen, Hoang Ngoc</creator><creatorcontrib>Hoang Le Truong ; Yen, Hoang Ngoc</creatorcontrib><description>In this paper, we give necessary and sufficient conditions for the existence of Ulrich bundles on cubic fourfold \(X\) of given rank \(r\). As consequences, we show that for every integer \(r\ge 2\) there exists a family of indecomposable rank \(r\) Ulrich bundles on the certain cubic fourfolds, depending roughly on \(r\) parameters, and in particular they are of wild representation type; special surfaces on the cubic fourfolds are explicitly constructed by Macaulay2; a new \(19\)-dimensional family of projective ten-dimensional irreducible holomorphic symplectic manifolds associated to a certain cubic fourfold is constructed; and for certain cubic fourfold \(X\), there exist arithmetically Cohen-Macaulay smooth surface \(Y \subset X\) which are not an intersection \(X \cap T\) for a codimension two subvariety \(T \subset \Bbb P^5\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2676380536?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Hoang Le Truong</creatorcontrib><creatorcontrib>Yen, Hoang Ngoc</creatorcontrib><title>Stable Ulrich bundles on cubic fourfolds</title><title>arXiv.org</title><description>In this paper, we give necessary and sufficient conditions for the existence of Ulrich bundles on cubic fourfold \(X\) of given rank \(r\). As consequences, we show that for every integer \(r\ge 2\) there exists a family of indecomposable rank \(r\) Ulrich bundles on the certain cubic fourfolds, depending roughly on \(r\) parameters, and in particular they are of wild representation type; special surfaces on the cubic fourfolds are explicitly constructed by Macaulay2; a new \(19\)-dimensional family of projective ten-dimensional irreducible holomorphic symplectic manifolds associated to a certain cubic fourfold is constructed; and for certain cubic fourfold \(X\), there exist arithmetically Cohen-Macaulay smooth surface \(Y \subset X\) which are not an intersection \(X \cap T\) for a codimension two subvariety \(T \subset \Bbb P^5\).</description><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCC5JTMpJVQjNKcpMzlBIKs1LyUktVsjPU0guTcpMVkjLLy1Ky89JKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWUCleUCpeKDhZsYWBqbGZsbEqQIAmN0wDw</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Hoang Le Truong</creator><creator>Yen, Hoang Ngoc</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220610</creationdate><title>Stable Ulrich bundles on cubic fourfolds</title><author>Hoang Le Truong ; Yen, Hoang Ngoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26763805363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoang Le Truong</creatorcontrib><creatorcontrib>Yen, Hoang Ngoc</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoang Le Truong</au><au>Yen, Hoang Ngoc</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stable Ulrich bundles on cubic fourfolds</atitle><jtitle>arXiv.org</jtitle><date>2022-06-10</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper, we give necessary and sufficient conditions for the existence of Ulrich bundles on cubic fourfold \(X\) of given rank \(r\). As consequences, we show that for every integer \(r\ge 2\) there exists a family of indecomposable rank \(r\) Ulrich bundles on the certain cubic fourfolds, depending roughly on \(r\) parameters, and in particular they are of wild representation type; special surfaces on the cubic fourfolds are explicitly constructed by Macaulay2; a new \(19\)-dimensional family of projective ten-dimensional irreducible holomorphic symplectic manifolds associated to a certain cubic fourfold is constructed; and for certain cubic fourfold \(X\), there exist arithmetically Cohen-Macaulay smooth surface \(Y \subset X\) which are not an intersection \(X \cap T\) for a codimension two subvariety \(T \subset \Bbb P^5\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2676380536 |
source | Publicly Available Content (ProQuest) |
subjects | Mathematical analysis |
title | Stable Ulrich bundles on cubic fourfolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stable%20Ulrich%20bundles%20on%20cubic%20fourfolds&rft.jtitle=arXiv.org&rft.au=Hoang%20Le%20Truong&rft.date=2022-06-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2676380536%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26763805363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676380536&rft_id=info:pmid/&rfr_iscdi=true |