Loading…

Formation of matter-wave polaritons in an optical lattice

The polariton—a quasiparticle formed by the strong coupling of a photon to a matter excitation—is a fundamental ingredient of emergent photonic quantum systems ranging from semiconductor nanophotonics to circuit quantum electrodynamics. Exploiting the interaction between polaritons has led to the re...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2022-06, Vol.18 (6), p.657-661
Main Authors: Kwon, Joonhyuk, Kim, Youngshin, Lanuza, Alfonso, Schneble, Dominik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The polariton—a quasiparticle formed by the strong coupling of a photon to a matter excitation—is a fundamental ingredient of emergent photonic quantum systems ranging from semiconductor nanophotonics to circuit quantum electrodynamics. Exploiting the interaction between polaritons has led to the realization of superfluids of light as well as of strongly correlated phases in the microwave domain, with similar efforts underway for microcavity excitons–polaritons. Here we develop an ultracold-atom analogue of an exciton–polariton system in which interacting polaritonic phases can be studied with full tunability and in the absence of dissipation. In our optical lattice system, the exciton is replaced by an atomic excitation, whereas an atomic matter wave is substituted for the photon under a strong dynamical coupling between the two constituents that hybridizes the two dispersion relations. We spectroscopically access the band structure of the matter-wave polariton by coupling the upper and lower polariton branches, as well as explore polaritonic transport in the superfluid and Mott-insulating regimes, finding quantitative agreement with our theoretical expectations. Our work sheds light on fundamental polariton properties and related many-body phenomena, and opens up novel possibilities for studies of polaritonic quantum matter. Polaritons are quasiparticles created through the coupling of matter excitations and light. A cold-atom experiment using matter waves instead of photons reports the observation of analogues of polaritons with tunable properties and no dissipation.
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-022-01565-4