Loading…
Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring
•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate...
Saved in:
Published in: | Measurement : journal of the International Measurement Confederation 2022-05, Vol.195, p.111102, Article 111102 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3 |
container_end_page | |
container_issue | |
container_start_page | 111102 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 195 |
creator | He, Min Liang, Peng Wang, Yang Xia, Zi-li Wu, Xiao-yang |
description | •An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility.
Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method. |
doi_str_mv | 10.1016/j.measurement.2022.111102 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676605289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122003670</els_id><sourcerecordid>2676605289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</originalsourceid><addsrcrecordid>eNqNUMtKxDAUDaLg-PiHiOuOebRJs5TBFwy4UXAX0vTWydAmY5IKLvx3M4wLl97NhXPPg3sQuqJkSQkVN9vlBCbNESbweckIY0tahrAjtKCt5FVN2dsxWhAmeMVYTU_RWUpbQojgSizQ97MfnQds5hwmk53FU_Auh-j8Ow4DNp0PcTIj_nRdLPfg92jK5gtb042QcGcS9LjgxloY4ZfUm2zwEMNUuHG2eY7FYwNmzJs_CRfoZDBjgsvffY5e7-9eVo_V-vnhaXW7riyvVa5EMwySKCtbymVbs25oKQjZUGmFUgRAUeDAG8tJQxWHFvqO173kkgwUZM_P0fXBdxfDxwwp622Yoy-RmgkpBGlYqwpLHVg2hpQiDHoX3WTil6ZE79vWW_2nbb1vWx_aLtrVQQvljU8HUSfrwFvoXQSbdR_cP1x-APdzkP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676605289</pqid></control><display><type>article</type><title>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</title><source>ScienceDirect Freedom Collection</source><creator>He, Min ; Liang, Peng ; Wang, Yang ; Xia, Zi-li ; Wu, Xiao-yang</creator><creatorcontrib>He, Min ; Liang, Peng ; Wang, Yang ; Xia, Zi-li ; Wu, Xiao-yang</creatorcontrib><description>•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility.
Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111102</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Abnormal vibrations ; Automation ; Bridge maintenance ; Cable-stayed bridges ; Euclidean geometry ; Euclidean space ; Feature extraction ; Feature indices ; Hilbert transformation ; Identification methods ; Medical technology ; Minimum Euclidean Distance Classifier ; Monitoring systems ; Online automatic monitoring ; Stay-cables ; Structural health monitoring ; Vibration ; Vibration monitoring ; Vortex-induced vibrations</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111102, Article 111102</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 31, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</citedby><cites>FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liang, Peng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Xia, Zi-li</creatorcontrib><creatorcontrib>Wu, Xiao-yang</creatorcontrib><title>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</title><title>Measurement : journal of the International Measurement Confederation</title><description>•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility.
Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.</description><subject>Abnormal vibrations</subject><subject>Automation</subject><subject>Bridge maintenance</subject><subject>Cable-stayed bridges</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Feature extraction</subject><subject>Feature indices</subject><subject>Hilbert transformation</subject><subject>Identification methods</subject><subject>Medical technology</subject><subject>Minimum Euclidean Distance Classifier</subject><subject>Monitoring systems</subject><subject>Online automatic monitoring</subject><subject>Stay-cables</subject><subject>Structural health monitoring</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><subject>Vortex-induced vibrations</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKxDAUDaLg-PiHiOuOebRJs5TBFwy4UXAX0vTWydAmY5IKLvx3M4wLl97NhXPPg3sQuqJkSQkVN9vlBCbNESbweckIY0tahrAjtKCt5FVN2dsxWhAmeMVYTU_RWUpbQojgSizQ97MfnQds5hwmk53FU_Auh-j8Ow4DNp0PcTIj_nRdLPfg92jK5gtb042QcGcS9LjgxloY4ZfUm2zwEMNUuHG2eY7FYwNmzJs_CRfoZDBjgsvffY5e7-9eVo_V-vnhaXW7riyvVa5EMwySKCtbymVbs25oKQjZUGmFUgRAUeDAG8tJQxWHFvqO173kkgwUZM_P0fXBdxfDxwwp622Yoy-RmgkpBGlYqwpLHVg2hpQiDHoX3WTil6ZE79vWW_2nbb1vWx_aLtrVQQvljU8HUSfrwFvoXQSbdR_cP1x-APdzkP4</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>He, Min</creator><creator>Liang, Peng</creator><creator>Wang, Yang</creator><creator>Xia, Zi-li</creator><creator>Wu, Xiao-yang</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220531</creationdate><title>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</title><author>He, Min ; Liang, Peng ; Wang, Yang ; Xia, Zi-li ; Wu, Xiao-yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormal vibrations</topic><topic>Automation</topic><topic>Bridge maintenance</topic><topic>Cable-stayed bridges</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Feature extraction</topic><topic>Feature indices</topic><topic>Hilbert transformation</topic><topic>Identification methods</topic><topic>Medical technology</topic><topic>Minimum Euclidean Distance Classifier</topic><topic>Monitoring systems</topic><topic>Online automatic monitoring</topic><topic>Stay-cables</topic><topic>Structural health monitoring</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><topic>Vortex-induced vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liang, Peng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Xia, Zi-li</creatorcontrib><creatorcontrib>Wu, Xiao-yang</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Min</au><au>Liang, Peng</au><au>Wang, Yang</au><au>Xia, Zi-li</au><au>Wu, Xiao-yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>195</volume><spage>111102</spage><pages>111102-</pages><artnum>111102</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility.
Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111102</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111102, Article 111102 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2676605289 |
source | ScienceDirect Freedom Collection |
subjects | Abnormal vibrations Automation Bridge maintenance Cable-stayed bridges Euclidean geometry Euclidean space Feature extraction Feature indices Hilbert transformation Identification methods Medical technology Minimum Euclidean Distance Classifier Monitoring systems Online automatic monitoring Stay-cables Structural health monitoring Vibration Vibration monitoring Vortex-induced vibrations |
title | Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20automatic%20monitoring%20of%20abnormal%20vibration%20of%20stay%20cables%20based%20on%20acceleration%20data%20from%20structural%20health%20monitoring&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=He,%20Min&rft.date=2022-05-31&rft.volume=195&rft.spage=111102&rft.pages=111102-&rft.artnum=111102&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111102&rft_dat=%3Cproquest_cross%3E2676605289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676605289&rft_id=info:pmid/&rfr_iscdi=true |