Loading…

Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring

•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2022-05, Vol.195, p.111102, Article 111102
Main Authors: He, Min, Liang, Peng, Wang, Yang, Xia, Zi-li, Wu, Xiao-yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3
cites cdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3
container_end_page
container_issue
container_start_page 111102
container_title Measurement : journal of the International Measurement Confederation
container_volume 195
creator He, Min
Liang, Peng
Wang, Yang
Xia, Zi-li
Wu, Xiao-yang
description •An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility. Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.
doi_str_mv 10.1016/j.measurement.2022.111102
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676605289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122003670</els_id><sourcerecordid>2676605289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</originalsourceid><addsrcrecordid>eNqNUMtKxDAUDaLg-PiHiOuOebRJs5TBFwy4UXAX0vTWydAmY5IKLvx3M4wLl97NhXPPg3sQuqJkSQkVN9vlBCbNESbweckIY0tahrAjtKCt5FVN2dsxWhAmeMVYTU_RWUpbQojgSizQ97MfnQds5hwmk53FU_Auh-j8Ow4DNp0PcTIj_nRdLPfg92jK5gtb042QcGcS9LjgxloY4ZfUm2zwEMNUuHG2eY7FYwNmzJs_CRfoZDBjgsvffY5e7-9eVo_V-vnhaXW7riyvVa5EMwySKCtbymVbs25oKQjZUGmFUgRAUeDAG8tJQxWHFvqO173kkgwUZM_P0fXBdxfDxwwp622Yoy-RmgkpBGlYqwpLHVg2hpQiDHoX3WTil6ZE79vWW_2nbb1vWx_aLtrVQQvljU8HUSfrwFvoXQSbdR_cP1x-APdzkP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676605289</pqid></control><display><type>article</type><title>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</title><source>ScienceDirect Freedom Collection</source><creator>He, Min ; Liang, Peng ; Wang, Yang ; Xia, Zi-li ; Wu, Xiao-yang</creator><creatorcontrib>He, Min ; Liang, Peng ; Wang, Yang ; Xia, Zi-li ; Wu, Xiao-yang</creatorcontrib><description>•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility. Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111102</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Abnormal vibrations ; Automation ; Bridge maintenance ; Cable-stayed bridges ; Euclidean geometry ; Euclidean space ; Feature extraction ; Feature indices ; Hilbert transformation ; Identification methods ; Medical technology ; Minimum Euclidean Distance Classifier ; Monitoring systems ; Online automatic monitoring ; Stay-cables ; Structural health monitoring ; Vibration ; Vibration monitoring ; Vortex-induced vibrations</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111102, Article 111102</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 31, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</citedby><cites>FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liang, Peng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Xia, Zi-li</creatorcontrib><creatorcontrib>Wu, Xiao-yang</creatorcontrib><title>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</title><title>Measurement : journal of the International Measurement Confederation</title><description>•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility. Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.</description><subject>Abnormal vibrations</subject><subject>Automation</subject><subject>Bridge maintenance</subject><subject>Cable-stayed bridges</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Feature extraction</subject><subject>Feature indices</subject><subject>Hilbert transformation</subject><subject>Identification methods</subject><subject>Medical technology</subject><subject>Minimum Euclidean Distance Classifier</subject><subject>Monitoring systems</subject><subject>Online automatic monitoring</subject><subject>Stay-cables</subject><subject>Structural health monitoring</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><subject>Vortex-induced vibrations</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKxDAUDaLg-PiHiOuOebRJs5TBFwy4UXAX0vTWydAmY5IKLvx3M4wLl97NhXPPg3sQuqJkSQkVN9vlBCbNESbweckIY0tahrAjtKCt5FVN2dsxWhAmeMVYTU_RWUpbQojgSizQ97MfnQds5hwmk53FU_Auh-j8Ow4DNp0PcTIj_nRdLPfg92jK5gtb042QcGcS9LjgxloY4ZfUm2zwEMNUuHG2eY7FYwNmzJs_CRfoZDBjgsvffY5e7-9eVo_V-vnhaXW7riyvVa5EMwySKCtbymVbs25oKQjZUGmFUgRAUeDAG8tJQxWHFvqO173kkgwUZM_P0fXBdxfDxwwp622Yoy-RmgkpBGlYqwpLHVg2hpQiDHoX3WTil6ZE79vWW_2nbb1vWx_aLtrVQQvljU8HUSfrwFvoXQSbdR_cP1x-APdzkP4</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>He, Min</creator><creator>Liang, Peng</creator><creator>Wang, Yang</creator><creator>Xia, Zi-li</creator><creator>Wu, Xiao-yang</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220531</creationdate><title>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</title><author>He, Min ; Liang, Peng ; Wang, Yang ; Xia, Zi-li ; Wu, Xiao-yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormal vibrations</topic><topic>Automation</topic><topic>Bridge maintenance</topic><topic>Cable-stayed bridges</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Feature extraction</topic><topic>Feature indices</topic><topic>Hilbert transformation</topic><topic>Identification methods</topic><topic>Medical technology</topic><topic>Minimum Euclidean Distance Classifier</topic><topic>Monitoring systems</topic><topic>Online automatic monitoring</topic><topic>Stay-cables</topic><topic>Structural health monitoring</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><topic>Vortex-induced vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liang, Peng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Xia, Zi-li</creatorcontrib><creatorcontrib>Wu, Xiao-yang</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Min</au><au>Liang, Peng</au><au>Wang, Yang</au><au>Xia, Zi-li</au><au>Wu, Xiao-yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>195</volume><spage>111102</spage><pages>111102-</pages><artnum>111102</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•An automatic identification method of abnormal vibrations for stay-cables is proposed.•Two feature indices distinguishing the VIV from ambient vibration are proposed.•Minimum Euclidean Distance Classifier is utilized to automate the identification process.•Field monitoring data are used to validate the feasibility. Online automatic monitoring of abnormal vibrations, such as vortex-induced vibration (VIV) and high amplitude vibration (HAV), of stay-cables is important for bridge maintenance. However, the existing methods either require manual intervention or yield unreasonable identification results and are not suitable for online automatic monitoring. This study proposes a fully automatic method to identify the abnormal vibrations of stay-cables based on acceleration data. Two quantified feature indices are extracted from frequency domain and complex domain to characterize the VIV. A feature vector is established to distinguish the VIV from ambient vibration, and Minimum Euclidean Distance Classifier is utilized to automate the online identification process. The HAV is automatically identified based on root mean square of acceleration. The proposed method avoids any manual intervention and can yield correct and convincible identification results. Case study of a cable-stayed bridge finally validates the feasibility and novelty of the proposed method.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111102</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111102, Article 111102
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2676605289
source ScienceDirect Freedom Collection
subjects Abnormal vibrations
Automation
Bridge maintenance
Cable-stayed bridges
Euclidean geometry
Euclidean space
Feature extraction
Feature indices
Hilbert transformation
Identification methods
Medical technology
Minimum Euclidean Distance Classifier
Monitoring systems
Online automatic monitoring
Stay-cables
Structural health monitoring
Vibration
Vibration monitoring
Vortex-induced vibrations
title Online automatic monitoring of abnormal vibration of stay cables based on acceleration data from structural health monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20automatic%20monitoring%20of%20abnormal%20vibration%20of%20stay%20cables%20based%20on%20acceleration%20data%20from%20structural%20health%20monitoring&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=He,%20Min&rft.date=2022-05-31&rft.volume=195&rft.spage=111102&rft.pages=111102-&rft.artnum=111102&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111102&rft_dat=%3Cproquest_cross%3E2676605289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-65ff709c78137842bf81e67517c6990ee91e3e35c305193e8edb34d7370f1e7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676605289&rft_id=info:pmid/&rfr_iscdi=true