Loading…

Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review

•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques. The risin...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2022-05, Vol.195, p.111067, Article 111067
Main Authors: Kanoun, Olfa, Kallel, Ahmed Yahia, Fendri, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313
cites cdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313
container_end_page
container_issue
container_start_page 111067
container_title Measurement : journal of the International Measurement Confederation
container_volume 195
creator Kanoun, Olfa
Kallel, Ahmed Yahia
Fendri, Ahmed
description •Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques. The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.
doi_str_mv 10.1016/j.measurement.2022.111067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676605436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122003335</els_id><sourcerecordid>2676605436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</originalsourceid><addsrcrecordid>eNqNkE1KxDAcxYMoOI7eIeK6NUnTNHE3DI4KMwii4C5kkn-dFqetSUdx5x28gGfxKJ7EDBV06ept3gfvh9AxJSklVJzW6RpM2HhYQ9OnjDCWUkqJKHbQiMoiSzhl97toRJjIEsY43UcHIdSEEJEpMULzxW8cL6BftS7gsvV4ajpjq940FgKuGtyvAN-Y5gFwW2L6-dHNvt7eozazMzzBHp4reDlEe6V5DHD0o2N0Nzu_nV4m8-uLq-lknlhWqD5ZQl4oki9LKZWSjDvqCqMUdTIXrlhyK4QxMio3khSCS8Od4yYX1HIwGc3G6GTo7Xz7tIHQ67rd-CZOaiYKIUjOMxFdanBZ34bgodSdr9bGv2pK9BaervUfeHoLTw_wYnY6ZCHeiNe8DraCyMJVHmyvXVv9o-UbHUJ-7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676605436</pqid></control><display><type>article</type><title>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</title><source>ScienceDirect Freedom Collection</source><creator>Kanoun, Olfa ; Kallel, Ahmed Yahia ; Fendri, Ahmed</creator><creatorcontrib>Kanoun, Olfa ; Kallel, Ahmed Yahia ; Fendri, Ahmed</creatorcontrib><description>•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques. The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111067</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Auto-balancing bridge ; Capacitance bridges ; Capacitance measurement ; Capacitance-to-phase ; Capacitance-to-relaxation time ; Capacitance-to-voltage ; Capacitive sensors ; Circuit protection ; Circuits ; Conductivity ; Converters ; Dielectrics ; Dual-slope method ; Impedance spectroscopy ; Lock in amplifiers ; Measurement ; Measurement methods ; Oscillators ; Resonance ; Sensors ; Sigma-delta method ; Signal processing ; Switched capacitor circuits</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111067, Article 111067</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 31, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</citedby><cites>FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kanoun, Olfa</creatorcontrib><creatorcontrib>Kallel, Ahmed Yahia</creatorcontrib><creatorcontrib>Fendri, Ahmed</creatorcontrib><title>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques. The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.</description><subject>Auto-balancing bridge</subject><subject>Capacitance bridges</subject><subject>Capacitance measurement</subject><subject>Capacitance-to-phase</subject><subject>Capacitance-to-relaxation time</subject><subject>Capacitance-to-voltage</subject><subject>Capacitive sensors</subject><subject>Circuit protection</subject><subject>Circuits</subject><subject>Conductivity</subject><subject>Converters</subject><subject>Dielectrics</subject><subject>Dual-slope method</subject><subject>Impedance spectroscopy</subject><subject>Lock in amplifiers</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Oscillators</subject><subject>Resonance</subject><subject>Sensors</subject><subject>Sigma-delta method</subject><subject>Signal processing</subject><subject>Switched capacitor circuits</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1KxDAcxYMoOI7eIeK6NUnTNHE3DI4KMwii4C5kkn-dFqetSUdx5x28gGfxKJ7EDBV06ept3gfvh9AxJSklVJzW6RpM2HhYQ9OnjDCWUkqJKHbQiMoiSzhl97toRJjIEsY43UcHIdSEEJEpMULzxW8cL6BftS7gsvV4ajpjq940FgKuGtyvAN-Y5gFwW2L6-dHNvt7eozazMzzBHp4reDlEe6V5DHD0o2N0Nzu_nV4m8-uLq-lknlhWqD5ZQl4oki9LKZWSjDvqCqMUdTIXrlhyK4QxMio3khSCS8Od4yYX1HIwGc3G6GTo7Xz7tIHQ67rd-CZOaiYKIUjOMxFdanBZ34bgodSdr9bGv2pK9BaervUfeHoLTw_wYnY6ZCHeiNe8DraCyMJVHmyvXVv9o-UbHUJ-7A</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Kanoun, Olfa</creator><creator>Kallel, Ahmed Yahia</creator><creator>Fendri, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220531</creationdate><title>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</title><author>Kanoun, Olfa ; Kallel, Ahmed Yahia ; Fendri, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auto-balancing bridge</topic><topic>Capacitance bridges</topic><topic>Capacitance measurement</topic><topic>Capacitance-to-phase</topic><topic>Capacitance-to-relaxation time</topic><topic>Capacitance-to-voltage</topic><topic>Capacitive sensors</topic><topic>Circuit protection</topic><topic>Circuits</topic><topic>Conductivity</topic><topic>Converters</topic><topic>Dielectrics</topic><topic>Dual-slope method</topic><topic>Impedance spectroscopy</topic><topic>Lock in amplifiers</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Oscillators</topic><topic>Resonance</topic><topic>Sensors</topic><topic>Sigma-delta method</topic><topic>Signal processing</topic><topic>Switched capacitor circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanoun, Olfa</creatorcontrib><creatorcontrib>Kallel, Ahmed Yahia</creatorcontrib><creatorcontrib>Fendri, Ahmed</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanoun, Olfa</au><au>Kallel, Ahmed Yahia</au><au>Fendri, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>195</volume><spage>111067</spage><pages>111067-</pages><artnum>111067</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques. The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111067</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111067, Article 111067
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2676605436
source ScienceDirect Freedom Collection
subjects Auto-balancing bridge
Capacitance bridges
Capacitance measurement
Capacitance-to-phase
Capacitance-to-relaxation time
Capacitance-to-voltage
Capacitive sensors
Circuit protection
Circuits
Conductivity
Converters
Dielectrics
Dual-slope method
Impedance spectroscopy
Lock in amplifiers
Measurement
Measurement methods
Oscillators
Resonance
Sensors
Sigma-delta method
Signal processing
Switched capacitor circuits
title Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20Methods%20for%20Capacitances%20in%20the%20Range%20of%201%C2%A0pF%E2%80%931%C2%A0nF:%20A%20review&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Kanoun,%20Olfa&rft.date=2022-05-31&rft.volume=195&rft.spage=111067&rft.pages=111067-&rft.artnum=111067&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111067&rft_dat=%3Cproquest_cross%3E2676605436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676605436&rft_id=info:pmid/&rfr_iscdi=true