Loading…
Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review
•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques. The risin...
Saved in:
Published in: | Measurement : journal of the International Measurement Confederation 2022-05, Vol.195, p.111067, Article 111067 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313 |
---|---|
cites | cdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313 |
container_end_page | |
container_issue | |
container_start_page | 111067 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 195 |
creator | Kanoun, Olfa Kallel, Ahmed Yahia Fendri, Ahmed |
description | •Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques.
The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy. |
doi_str_mv | 10.1016/j.measurement.2022.111067 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676605436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122003335</els_id><sourcerecordid>2676605436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</originalsourceid><addsrcrecordid>eNqNkE1KxDAcxYMoOI7eIeK6NUnTNHE3DI4KMwii4C5kkn-dFqetSUdx5x28gGfxKJ7EDBV06ept3gfvh9AxJSklVJzW6RpM2HhYQ9OnjDCWUkqJKHbQiMoiSzhl97toRJjIEsY43UcHIdSEEJEpMULzxW8cL6BftS7gsvV4ajpjq940FgKuGtyvAN-Y5gFwW2L6-dHNvt7eozazMzzBHp4reDlEe6V5DHD0o2N0Nzu_nV4m8-uLq-lknlhWqD5ZQl4oki9LKZWSjDvqCqMUdTIXrlhyK4QxMio3khSCS8Od4yYX1HIwGc3G6GTo7Xz7tIHQ67rd-CZOaiYKIUjOMxFdanBZ34bgodSdr9bGv2pK9BaervUfeHoLTw_wYnY6ZCHeiNe8DraCyMJVHmyvXVv9o-UbHUJ-7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676605436</pqid></control><display><type>article</type><title>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</title><source>ScienceDirect Freedom Collection</source><creator>Kanoun, Olfa ; Kallel, Ahmed Yahia ; Fendri, Ahmed</creator><creatorcontrib>Kanoun, Olfa ; Kallel, Ahmed Yahia ; Fendri, Ahmed</creatorcontrib><description>•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques.
The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111067</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Auto-balancing bridge ; Capacitance bridges ; Capacitance measurement ; Capacitance-to-phase ; Capacitance-to-relaxation time ; Capacitance-to-voltage ; Capacitive sensors ; Circuit protection ; Circuits ; Conductivity ; Converters ; Dielectrics ; Dual-slope method ; Impedance spectroscopy ; Lock in amplifiers ; Measurement ; Measurement methods ; Oscillators ; Resonance ; Sensors ; Sigma-delta method ; Signal processing ; Switched capacitor circuits</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111067, Article 111067</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 31, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</citedby><cites>FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kanoun, Olfa</creatorcontrib><creatorcontrib>Kallel, Ahmed Yahia</creatorcontrib><creatorcontrib>Fendri, Ahmed</creatorcontrib><title>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques.
The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.</description><subject>Auto-balancing bridge</subject><subject>Capacitance bridges</subject><subject>Capacitance measurement</subject><subject>Capacitance-to-phase</subject><subject>Capacitance-to-relaxation time</subject><subject>Capacitance-to-voltage</subject><subject>Capacitive sensors</subject><subject>Circuit protection</subject><subject>Circuits</subject><subject>Conductivity</subject><subject>Converters</subject><subject>Dielectrics</subject><subject>Dual-slope method</subject><subject>Impedance spectroscopy</subject><subject>Lock in amplifiers</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Oscillators</subject><subject>Resonance</subject><subject>Sensors</subject><subject>Sigma-delta method</subject><subject>Signal processing</subject><subject>Switched capacitor circuits</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1KxDAcxYMoOI7eIeK6NUnTNHE3DI4KMwii4C5kkn-dFqetSUdx5x28gGfxKJ7EDBV06ept3gfvh9AxJSklVJzW6RpM2HhYQ9OnjDCWUkqJKHbQiMoiSzhl97toRJjIEsY43UcHIdSEEJEpMULzxW8cL6BftS7gsvV4ajpjq940FgKuGtyvAN-Y5gFwW2L6-dHNvt7eozazMzzBHp4reDlEe6V5DHD0o2N0Nzu_nV4m8-uLq-lknlhWqD5ZQl4oki9LKZWSjDvqCqMUdTIXrlhyK4QxMio3khSCS8Od4yYX1HIwGc3G6GTo7Xz7tIHQ67rd-CZOaiYKIUjOMxFdanBZ34bgodSdr9bGv2pK9BaervUfeHoLTw_wYnY6ZCHeiNe8DraCyMJVHmyvXVv9o-UbHUJ-7A</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Kanoun, Olfa</creator><creator>Kallel, Ahmed Yahia</creator><creator>Fendri, Ahmed</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220531</creationdate><title>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</title><author>Kanoun, Olfa ; Kallel, Ahmed Yahia ; Fendri, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auto-balancing bridge</topic><topic>Capacitance bridges</topic><topic>Capacitance measurement</topic><topic>Capacitance-to-phase</topic><topic>Capacitance-to-relaxation time</topic><topic>Capacitance-to-voltage</topic><topic>Capacitive sensors</topic><topic>Circuit protection</topic><topic>Circuits</topic><topic>Conductivity</topic><topic>Converters</topic><topic>Dielectrics</topic><topic>Dual-slope method</topic><topic>Impedance spectroscopy</topic><topic>Lock in amplifiers</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Oscillators</topic><topic>Resonance</topic><topic>Sensors</topic><topic>Sigma-delta method</topic><topic>Signal processing</topic><topic>Switched capacitor circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanoun, Olfa</creatorcontrib><creatorcontrib>Kallel, Ahmed Yahia</creatorcontrib><creatorcontrib>Fendri, Ahmed</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanoun, Olfa</au><au>Kallel, Ahmed Yahia</au><au>Fendri, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>195</volume><spage>111067</spage><pages>111067-</pages><artnum>111067</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Overview of capacitance measurement circuits including recent developments.•Comparison of measurement circuits for lossy 1 pF to 1 nF capacitance in terms of measurement time, and accuracy.•Consideration of the influence of conductance loss and stray capacitance on measurement techniques.
The rising use of capacitive sensors imposes the need of numerous measuring circuits with different characteristics. Stray fields and conductance losses are thereby key influencing factors that must be taken into account. In this paper, we provide an actual overview of capacitance measurement circuits considering well-known and modern measurement methods, such as lock-in amplifier, relaxation methods, and Martin-based oscillators as well as completely novel classes of capacitance measurement circuits converting the capacitance value directly to digital signals via sigma-delta and dual-slope converter circuit architectures. We classify the capacitance measurement circuits into six categories and address their properties and implementation aspects and compare their performance in a wide the capacitance range. The comparison shows that immunity to stray capacitances and conductive losses is not always given. Capacitance-to-Voltage, Auto-Balancing Bridge, and Capacitance-to-Digital show the best performance in this aspect and are therefore relevant for use in dielectric spectroscopy.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111067</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2022-05, Vol.195, p.111067, Article 111067 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2676605436 |
source | ScienceDirect Freedom Collection |
subjects | Auto-balancing bridge Capacitance bridges Capacitance measurement Capacitance-to-phase Capacitance-to-relaxation time Capacitance-to-voltage Capacitive sensors Circuit protection Circuits Conductivity Converters Dielectrics Dual-slope method Impedance spectroscopy Lock in amplifiers Measurement Measurement methods Oscillators Resonance Sensors Sigma-delta method Signal processing Switched capacitor circuits |
title | Measurement Methods for Capacitances in the Range of 1 pF–1 nF: A review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20Methods%20for%20Capacitances%20in%20the%20Range%20of%201%C2%A0pF%E2%80%931%C2%A0nF:%20A%20review&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Kanoun,%20Olfa&rft.date=2022-05-31&rft.volume=195&rft.spage=111067&rft.pages=111067-&rft.artnum=111067&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111067&rft_dat=%3Cproquest_cross%3E2676605436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-be57905bf8899824d1d7a991d856d7b4c66aa8b4c4a807648a4dd4a561c4ea313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676605436&rft_id=info:pmid/&rfr_iscdi=true |