Loading…
Quantum imaging exploiting twisted photon pairs
Quantum correlation of two-photon states has been utilized to suppress the environmental noise in imaging down to the single-photon level. However, the size of the coherence area of photon pairs limits the applications of quantum imaging based on spatial correlations. Here, we propose a quantum imag...
Saved in:
Published in: | arXiv.org 2023-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum correlation of two-photon states has been utilized to suppress the environmental noise in imaging down to the single-photon level. However, the size of the coherence area of photon pairs limits the applications of quantum imaging based on spatial correlations. Here, we propose a quantum imaging scheme exploiting twisted photon pairs with tunable spatial-correlation regions to circumvent this limitation. We employ a bulk-density coincidence to enhance the imaging signal. Specifically, we introduce a re-scaled image signal, which is immune to the background intensity distribution profile of the photon pulse. We reveal a destructive interference between the anti-bunched photon pair and bunched photon pair in the imaging process. Our work could pave a way for twisted-photon-based quantum holography and quantum microscopy. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2206.05892 |