Loading…
Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks
An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation s...
Saved in:
Published in: | IEEE systems journal 2022-06, Vol.16 (2), p.1-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013 |
container_end_page | 12 |
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE systems journal |
container_volume | 16 |
creator | Javaid, Shumaila Wu, Zhenqiang Fahim, Hamza Mabrouk, Ismail Ben Al-Hasan, Muath Rasheed, Muhammad Babar |
description | An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss. |
doi_str_mv | 10.1109/JSYST.2020.3043827 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676781064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9310209</ieee_id><sourcerecordid>2676781064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP7vb9ogoiiF4ABM9bcbtFEHYxXYJ4dtbWeLpTWbebybzCLnmrMc5M3cv04_prCeYYD3JUqmFOiEdbqRKjJDp6aEWieY6PScXISwZy3SmTIe8DxGtq_0OvKUT3HpYRWl2tf9O7iGgpQ_QAO3P5x7n0Czqik7LL1wjjRAdVY2Hz9ruad8j0AlUddXC4ZKcOVgFvDpql7wNH2eD52T8-jQa9MdJKUzWJJBLAc5Il8Y_rLZl6bI4UOCEgEw5lyMzmnHJlVMaLeSoGSirELg2sd8lt-3eja9_thiaYllvfRVPFiJXudKc5Wl0idZV-joEj67Y-MUa_L7grPhLsDgkWPwlWBwTjNBNCy0Q8R8wkkeTkb8JG20X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676781064</pqid></control><display><type>article</type><title>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Javaid, Shumaila ; Wu, Zhenqiang ; Fahim, Hamza ; Mabrouk, Ismail Ben ; Al-Hasan, Muath ; Rasheed, Muhammad Babar</creator><creatorcontrib>Javaid, Shumaila ; Wu, Zhenqiang ; Fahim, Hamza ; Mabrouk, Ismail Ben ; Al-Hasan, Muath ; Rasheed, Muhammad Babar</creatorcontrib><description>An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2020.3043827</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Artificial intelligence ; Artificial neural networks ; Data communication ; Data management ; Data transmission ; Delay ; Delays ; Energy consumption ; energy efficient ; Energy sources ; feedforward neural network (FFNN) ; Glucose ; intrabody nanonetworks ; Nanotechnology devices ; Neural networks ; Residual energy ; Wireless sensor networks</subject><ispartof>IEEE systems journal, 2022-06, Vol.16 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</citedby><cites>FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</cites><orcidid>0000-0001-9381-8300 ; 0000-0001-6537-7691 ; 0000-0002-9911-0693 ; 0000-0001-5424-915X ; 0000-0002-7860-5208 ; 0000-0002-3629-2987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9310209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Javaid, Shumaila</creatorcontrib><creatorcontrib>Wu, Zhenqiang</creatorcontrib><creatorcontrib>Fahim, Hamza</creatorcontrib><creatorcontrib>Mabrouk, Ismail Ben</creatorcontrib><creatorcontrib>Al-Hasan, Muath</creatorcontrib><creatorcontrib>Rasheed, Muhammad Babar</creatorcontrib><title>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.</description><subject>Agglomeration</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Data communication</subject><subject>Data management</subject><subject>Data transmission</subject><subject>Delay</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>energy efficient</subject><subject>Energy sources</subject><subject>feedforward neural network (FFNN)</subject><subject>Glucose</subject><subject>intrabody nanonetworks</subject><subject>Nanotechnology devices</subject><subject>Neural networks</subject><subject>Residual energy</subject><subject>Wireless sensor networks</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP7vb9ogoiiF4ABM9bcbtFEHYxXYJ4dtbWeLpTWbebybzCLnmrMc5M3cv04_prCeYYD3JUqmFOiEdbqRKjJDp6aEWieY6PScXISwZy3SmTIe8DxGtq_0OvKUT3HpYRWl2tf9O7iGgpQ_QAO3P5x7n0Czqik7LL1wjjRAdVY2Hz9ruad8j0AlUddXC4ZKcOVgFvDpql7wNH2eD52T8-jQa9MdJKUzWJJBLAc5Il8Y_rLZl6bI4UOCEgEw5lyMzmnHJlVMaLeSoGSirELg2sd8lt-3eja9_thiaYllvfRVPFiJXudKc5Wl0idZV-joEj67Y-MUa_L7grPhLsDgkWPwlWBwTjNBNCy0Q8R8wkkeTkb8JG20X</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Javaid, Shumaila</creator><creator>Wu, Zhenqiang</creator><creator>Fahim, Hamza</creator><creator>Mabrouk, Ismail Ben</creator><creator>Al-Hasan, Muath</creator><creator>Rasheed, Muhammad Babar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9381-8300</orcidid><orcidid>https://orcid.org/0000-0001-6537-7691</orcidid><orcidid>https://orcid.org/0000-0002-9911-0693</orcidid><orcidid>https://orcid.org/0000-0001-5424-915X</orcidid><orcidid>https://orcid.org/0000-0002-7860-5208</orcidid><orcidid>https://orcid.org/0000-0002-3629-2987</orcidid></search><sort><creationdate>20220601</creationdate><title>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</title><author>Javaid, Shumaila ; Wu, Zhenqiang ; Fahim, Hamza ; Mabrouk, Ismail Ben ; Al-Hasan, Muath ; Rasheed, Muhammad Babar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Data communication</topic><topic>Data management</topic><topic>Data transmission</topic><topic>Delay</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>energy efficient</topic><topic>Energy sources</topic><topic>feedforward neural network (FFNN)</topic><topic>Glucose</topic><topic>intrabody nanonetworks</topic><topic>Nanotechnology devices</topic><topic>Neural networks</topic><topic>Residual energy</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javaid, Shumaila</creatorcontrib><creatorcontrib>Wu, Zhenqiang</creatorcontrib><creatorcontrib>Fahim, Hamza</creatorcontrib><creatorcontrib>Mabrouk, Ismail Ben</creatorcontrib><creatorcontrib>Al-Hasan, Muath</creatorcontrib><creatorcontrib>Rasheed, Muhammad Babar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javaid, Shumaila</au><au>Wu, Zhenqiang</au><au>Fahim, Hamza</au><au>Mabrouk, Ismail Ben</au><au>Al-Hasan, Muath</au><au>Rasheed, Muhammad Babar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2020.3043827</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9381-8300</orcidid><orcidid>https://orcid.org/0000-0001-6537-7691</orcidid><orcidid>https://orcid.org/0000-0002-9911-0693</orcidid><orcidid>https://orcid.org/0000-0001-5424-915X</orcidid><orcidid>https://orcid.org/0000-0002-7860-5208</orcidid><orcidid>https://orcid.org/0000-0002-3629-2987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2022-06, Vol.16 (2), p.1-12 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_proquest_journals_2676781064 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Agglomeration Artificial intelligence Artificial neural networks Data communication Data management Data transmission Delay Delays Energy consumption energy efficient Energy sources feedforward neural network (FFNN) Glucose intrabody nanonetworks Nanotechnology devices Neural networks Residual energy Wireless sensor networks |
title | Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedforward%20Neural%20Network-Based%20Data%20Aggregation%20Scheme%20for%20Intrabody%20Area%20Nanonetworks&rft.jtitle=IEEE%20systems%20journal&rft.au=Javaid,%20Shumaila&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2020.3043827&rft_dat=%3Cproquest_cross%3E2676781064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676781064&rft_id=info:pmid/&rft_ieee_id=9310209&rfr_iscdi=true |