Loading…

Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks

An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE systems journal 2022-06, Vol.16 (2), p.1-12
Main Authors: Javaid, Shumaila, Wu, Zhenqiang, Fahim, Hamza, Mabrouk, Ismail Ben, Al-Hasan, Muath, Rasheed, Muhammad Babar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013
cites cdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013
container_end_page 12
container_issue 2
container_start_page 1
container_title IEEE systems journal
container_volume 16
creator Javaid, Shumaila
Wu, Zhenqiang
Fahim, Hamza
Mabrouk, Ismail Ben
Al-Hasan, Muath
Rasheed, Muhammad Babar
description An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.
doi_str_mv 10.1109/JSYST.2020.3043827
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676781064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9310209</ieee_id><sourcerecordid>2676781064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP7vb9ogoiiF4ABM9bcbtFEHYxXYJ4dtbWeLpTWbebybzCLnmrMc5M3cv04_prCeYYD3JUqmFOiEdbqRKjJDp6aEWieY6PScXISwZy3SmTIe8DxGtq_0OvKUT3HpYRWl2tf9O7iGgpQ_QAO3P5x7n0Czqik7LL1wjjRAdVY2Hz9ruad8j0AlUddXC4ZKcOVgFvDpql7wNH2eD52T8-jQa9MdJKUzWJJBLAc5Il8Y_rLZl6bI4UOCEgEw5lyMzmnHJlVMaLeSoGSirELg2sd8lt-3eja9_thiaYllvfRVPFiJXudKc5Wl0idZV-joEj67Y-MUa_L7grPhLsDgkWPwlWBwTjNBNCy0Q8R8wkkeTkb8JG20X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676781064</pqid></control><display><type>article</type><title>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Javaid, Shumaila ; Wu, Zhenqiang ; Fahim, Hamza ; Mabrouk, Ismail Ben ; Al-Hasan, Muath ; Rasheed, Muhammad Babar</creator><creatorcontrib>Javaid, Shumaila ; Wu, Zhenqiang ; Fahim, Hamza ; Mabrouk, Ismail Ben ; Al-Hasan, Muath ; Rasheed, Muhammad Babar</creatorcontrib><description>An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2020.3043827</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Artificial intelligence ; Artificial neural networks ; Data communication ; Data management ; Data transmission ; Delay ; Delays ; Energy consumption ; energy efficient ; Energy sources ; feedforward neural network (FFNN) ; Glucose ; intrabody nanonetworks ; Nanotechnology devices ; Neural networks ; Residual energy ; Wireless sensor networks</subject><ispartof>IEEE systems journal, 2022-06, Vol.16 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</citedby><cites>FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</cites><orcidid>0000-0001-9381-8300 ; 0000-0001-6537-7691 ; 0000-0002-9911-0693 ; 0000-0001-5424-915X ; 0000-0002-7860-5208 ; 0000-0002-3629-2987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9310209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Javaid, Shumaila</creatorcontrib><creatorcontrib>Wu, Zhenqiang</creatorcontrib><creatorcontrib>Fahim, Hamza</creatorcontrib><creatorcontrib>Mabrouk, Ismail Ben</creatorcontrib><creatorcontrib>Al-Hasan, Muath</creatorcontrib><creatorcontrib>Rasheed, Muhammad Babar</creatorcontrib><title>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.</description><subject>Agglomeration</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Data communication</subject><subject>Data management</subject><subject>Data transmission</subject><subject>Delay</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>energy efficient</subject><subject>Energy sources</subject><subject>feedforward neural network (FFNN)</subject><subject>Glucose</subject><subject>intrabody nanonetworks</subject><subject>Nanotechnology devices</subject><subject>Neural networks</subject><subject>Residual energy</subject><subject>Wireless sensor networks</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PAjEQxRujiYh-Ab008bzYP7vb9ogoiiF4ABM9bcbtFEHYxXYJ4dtbWeLpTWbebybzCLnmrMc5M3cv04_prCeYYD3JUqmFOiEdbqRKjJDp6aEWieY6PScXISwZy3SmTIe8DxGtq_0OvKUT3HpYRWl2tf9O7iGgpQ_QAO3P5x7n0Czqik7LL1wjjRAdVY2Hz9ruad8j0AlUddXC4ZKcOVgFvDpql7wNH2eD52T8-jQa9MdJKUzWJJBLAc5Il8Y_rLZl6bI4UOCEgEw5lyMzmnHJlVMaLeSoGSirELg2sd8lt-3eja9_thiaYllvfRVPFiJXudKc5Wl0idZV-joEj67Y-MUa_L7grPhLsDgkWPwlWBwTjNBNCy0Q8R8wkkeTkb8JG20X</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Javaid, Shumaila</creator><creator>Wu, Zhenqiang</creator><creator>Fahim, Hamza</creator><creator>Mabrouk, Ismail Ben</creator><creator>Al-Hasan, Muath</creator><creator>Rasheed, Muhammad Babar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9381-8300</orcidid><orcidid>https://orcid.org/0000-0001-6537-7691</orcidid><orcidid>https://orcid.org/0000-0002-9911-0693</orcidid><orcidid>https://orcid.org/0000-0001-5424-915X</orcidid><orcidid>https://orcid.org/0000-0002-7860-5208</orcidid><orcidid>https://orcid.org/0000-0002-3629-2987</orcidid></search><sort><creationdate>20220601</creationdate><title>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</title><author>Javaid, Shumaila ; Wu, Zhenqiang ; Fahim, Hamza ; Mabrouk, Ismail Ben ; Al-Hasan, Muath ; Rasheed, Muhammad Babar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Data communication</topic><topic>Data management</topic><topic>Data transmission</topic><topic>Delay</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>energy efficient</topic><topic>Energy sources</topic><topic>feedforward neural network (FFNN)</topic><topic>Glucose</topic><topic>intrabody nanonetworks</topic><topic>Nanotechnology devices</topic><topic>Neural networks</topic><topic>Residual energy</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javaid, Shumaila</creatorcontrib><creatorcontrib>Wu, Zhenqiang</creatorcontrib><creatorcontrib>Fahim, Hamza</creatorcontrib><creatorcontrib>Mabrouk, Ismail Ben</creatorcontrib><creatorcontrib>Al-Hasan, Muath</creatorcontrib><creatorcontrib>Rasheed, Muhammad Babar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javaid, Shumaila</au><au>Wu, Zhenqiang</au><au>Fahim, Hamza</au><au>Mabrouk, Ismail Ben</au><au>Al-Hasan, Muath</au><au>Rasheed, Muhammad Babar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>An intrabody area nanonetwork (intra-BANN) is a set of nanoscale devices, which have outstanding cellular level precision and accuracy for enabling noninvasive healthcare monitoring and disease diagnosis. In this article, we design a novel feedforward neural networks (FFNNs) based data aggregation scheme that integrates the attributes of artificial intelligence to boost the computational intelligence of intra-BANNs for prolonged network lifetime. In the proposed scheme, data division and labeling are performed to transmit detected information using two different types of packets with different sizes to save energy resources and to avoid redundant data transmission. FFNN-based periodic data transmission exploits the fitness function approximation characteristics of FFNN to increase the transmission probability of critical information with minimum energy consumption and delay, whereas our proposed event-driven data transmission also ensures the transmission of high priority data with minimal delay and storage overhead. The detailed evaluation and comparison of our proposed framework with three existing schemes conducted using the Nano-Sim tool highlight that our proposed scheme performs 50%-60% better than state-of-the-art schemes in terms of residual energy, delay, and packet loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2020.3043827</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9381-8300</orcidid><orcidid>https://orcid.org/0000-0001-6537-7691</orcidid><orcidid>https://orcid.org/0000-0002-9911-0693</orcidid><orcidid>https://orcid.org/0000-0001-5424-915X</orcidid><orcidid>https://orcid.org/0000-0002-7860-5208</orcidid><orcidid>https://orcid.org/0000-0002-3629-2987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2022-06, Vol.16 (2), p.1-12
issn 1932-8184
1937-9234
language eng
recordid cdi_proquest_journals_2676781064
source IEEE Electronic Library (IEL) Journals
subjects Agglomeration
Artificial intelligence
Artificial neural networks
Data communication
Data management
Data transmission
Delay
Delays
Energy consumption
energy efficient
Energy sources
feedforward neural network (FFNN)
Glucose
intrabody nanonetworks
Nanotechnology devices
Neural networks
Residual energy
Wireless sensor networks
title Feedforward Neural Network-Based Data Aggregation Scheme for Intrabody Area Nanonetworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedforward%20Neural%20Network-Based%20Data%20Aggregation%20Scheme%20for%20Intrabody%20Area%20Nanonetworks&rft.jtitle=IEEE%20systems%20journal&rft.au=Javaid,%20Shumaila&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2020.3043827&rft_dat=%3Cproquest_cross%3E2676781064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-a632af93f4110d8dccf52957af22a57ff6e09801317f78eda6e80a7d7ea189013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676781064&rft_id=info:pmid/&rft_ieee_id=9310209&rfr_iscdi=true