Loading…

Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii

We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2022-06, Vol.34 (6)
Main Authors: Wang, Yue, Zhang, Liangqi, Liu, Hao, Yin, Linmao, Xiao, Yao, Liu, Yong, Zeng, Zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013
cites cdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013
container_end_page
container_issue 6
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Wang, Yue
Zhang, Liangqi
Liu, Hao
Yin, Linmao
Xiao, Yao
Liu, Yong
Zeng, Zhong
description We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 
doi_str_mv 10.1063/5.0090593
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677183963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677183963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUZNIkzVKKH4WCLnQ9ZPLRpqZJm2QYBX-8I-3a1bsPzn0PDgDXGE0wYuSeThASiApyAkYYzUTFGWOnf5mjijGCz8FFzhuEEBE1G4GfRchFts674kyG0cKyNmkbldw572X6htbHPkMX4LCtDHxLMujiYei2rUnQu33nNGyT06uh35rSGxNg6SNUUX456aF2-TPD3pX1EK01yYQCk9TOXYIzK302V8c5Bh9Pj-_zl2r5-ryYPywrVYu6VFrZum1ZTRk1WhiKOa8pshwRpJnggk-pstxKrC0RdMqJxIoSMVXWWEkRJmNwc7i7S3HfmVyaTexSGF42NeMcz4hgZKBuD5RKMedkbLNLbjsoaDBq_uQ2tDnKHdi7A5uVK7K4GP6BfwGLp3tD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677183963</pqid></control><display><type>article</type><title>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Wang, Yue ; Zhang, Liangqi ; Liu, Hao ; Yin, Linmao ; Xiao, Yao ; Liu, Yong ; Zeng, Zhong</creator><creatorcontrib>Wang, Yue ; Zhang, Liangqi ; Liu, Hao ; Yin, Linmao ; Xiao, Yao ; Liu, Yong ; Zeng, Zhong</creatorcontrib><description>We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 &lt; Γ ≤ 0.91 at Γr = 0.50 when the liquid bridge is heated from the upper disk. The energy analysis indicates that the instabilities for all cases are predominantly caused by the hydrothermal wave instability and the phenomenon of three transitions results from the variation of thermal energy transfer efficiency with the growth of the Marangoni number.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0090593</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aspect ratio ; Axisymmetric flow ; Disks ; Energy transfer ; Flow stability ; Fluid dynamics ; Free surfaces ; Laplace equation ; Liquid bridges ; Microgravity ; Oscillating flow ; Physics ; Prandtl number ; Spectral element method ; Stability analysis ; Static deformation ; Steady flow ; Thermal energy ; Thermocapillary flow ; Three dimensional flow ; Two dimensional flow</subject><ispartof>Physics of fluids (1994), 2022-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</citedby><cites>FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</cites><orcidid>0000-0002-0716-1611 ; 0000-0001-5899-8406 ; 0000-0002-0535-6845 ; 0000-0002-6342-3487 ; 0000-0001-6039-5786 ; 0000-0003-0782-4849 ; 0000-0002-9616-7117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Zhang, Liangqi</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yin, Linmao</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zeng, Zhong</creatorcontrib><title>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</title><title>Physics of fluids (1994)</title><description>We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 &lt; Γ ≤ 0.91 at Γr = 0.50 when the liquid bridge is heated from the upper disk. The energy analysis indicates that the instabilities for all cases are predominantly caused by the hydrothermal wave instability and the phenomenon of three transitions results from the variation of thermal energy transfer efficiency with the growth of the Marangoni number.</description><subject>Aspect ratio</subject><subject>Axisymmetric flow</subject><subject>Disks</subject><subject>Energy transfer</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Laplace equation</subject><subject>Liquid bridges</subject><subject>Microgravity</subject><subject>Oscillating flow</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Spectral element method</subject><subject>Stability analysis</subject><subject>Static deformation</subject><subject>Steady flow</subject><subject>Thermal energy</subject><subject>Thermocapillary flow</subject><subject>Three dimensional flow</subject><subject>Two dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUZNIkzVKKH4WCLnQ9ZPLRpqZJm2QYBX-8I-3a1bsPzn0PDgDXGE0wYuSeThASiApyAkYYzUTFGWOnf5mjijGCz8FFzhuEEBE1G4GfRchFts674kyG0cKyNmkbldw572X6htbHPkMX4LCtDHxLMujiYei2rUnQu33nNGyT06uh35rSGxNg6SNUUX456aF2-TPD3pX1EK01yYQCk9TOXYIzK302V8c5Bh9Pj-_zl2r5-ryYPywrVYu6VFrZum1ZTRk1WhiKOa8pshwRpJnggk-pstxKrC0RdMqJxIoSMVXWWEkRJmNwc7i7S3HfmVyaTexSGF42NeMcz4hgZKBuD5RKMedkbLNLbjsoaDBq_uQ2tDnKHdi7A5uVK7K4GP6BfwGLp3tD</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Wang, Yue</creator><creator>Zhang, Liangqi</creator><creator>Liu, Hao</creator><creator>Yin, Linmao</creator><creator>Xiao, Yao</creator><creator>Liu, Yong</creator><creator>Zeng, Zhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0716-1611</orcidid><orcidid>https://orcid.org/0000-0001-5899-8406</orcidid><orcidid>https://orcid.org/0000-0002-0535-6845</orcidid><orcidid>https://orcid.org/0000-0002-6342-3487</orcidid><orcidid>https://orcid.org/0000-0001-6039-5786</orcidid><orcidid>https://orcid.org/0000-0003-0782-4849</orcidid><orcidid>https://orcid.org/0000-0002-9616-7117</orcidid></search><sort><creationdate>202206</creationdate><title>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</title><author>Wang, Yue ; Zhang, Liangqi ; Liu, Hao ; Yin, Linmao ; Xiao, Yao ; Liu, Yong ; Zeng, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aspect ratio</topic><topic>Axisymmetric flow</topic><topic>Disks</topic><topic>Energy transfer</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Laplace equation</topic><topic>Liquid bridges</topic><topic>Microgravity</topic><topic>Oscillating flow</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Spectral element method</topic><topic>Stability analysis</topic><topic>Static deformation</topic><topic>Steady flow</topic><topic>Thermal energy</topic><topic>Thermocapillary flow</topic><topic>Three dimensional flow</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Zhang, Liangqi</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yin, Linmao</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zeng, Zhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Zhang, Liangqi</au><au>Liu, Hao</au><au>Yin, Linmao</au><au>Xiao, Yao</au><au>Liu, Yong</au><au>Zeng, Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 &lt; Γ ≤ 0.91 at Γr = 0.50 when the liquid bridge is heated from the upper disk. The energy analysis indicates that the instabilities for all cases are predominantly caused by the hydrothermal wave instability and the phenomenon of three transitions results from the variation of thermal energy transfer efficiency with the growth of the Marangoni number.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090593</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0716-1611</orcidid><orcidid>https://orcid.org/0000-0001-5899-8406</orcidid><orcidid>https://orcid.org/0000-0002-0535-6845</orcidid><orcidid>https://orcid.org/0000-0002-6342-3487</orcidid><orcidid>https://orcid.org/0000-0001-6039-5786</orcidid><orcidid>https://orcid.org/0000-0003-0782-4849</orcidid><orcidid>https://orcid.org/0000-0002-9616-7117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-06, Vol.34 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2677183963
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会期刊回溯(NSTL购买)
subjects Aspect ratio
Axisymmetric flow
Disks
Energy transfer
Flow stability
Fluid dynamics
Free surfaces
Laplace equation
Liquid bridges
Microgravity
Oscillating flow
Physics
Prandtl number
Spectral element method
Stability analysis
Static deformation
Steady flow
Thermal energy
Thermocapillary flow
Three dimensional flow
Two dimensional flow
title Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instabilities%20of%20thermocapillary%20flows%20in%20large%20Prandtl%20number%20liquid%20bridges%20between%20two%20coaxial%20disks%20with%20different%20radii&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Yue&rft.date=2022-06&rft.volume=34&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0090593&rft_dat=%3Cproquest_cross%3E2677183963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677183963&rft_id=info:pmid/&rfr_iscdi=true