Loading…
Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii
We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is...
Saved in:
Published in: | Physics of fluids (1994) 2022-06, Vol.34 (6) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Wang, Yue Zhang, Liangqi Liu, Hao Yin, Linmao Xiao, Yao Liu, Yong Zeng, Zhong |
description | We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 |
doi_str_mv | 10.1063/5.0090593 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677183963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677183963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUZNIkzVKKH4WCLnQ9ZPLRpqZJm2QYBX-8I-3a1bsPzn0PDgDXGE0wYuSeThASiApyAkYYzUTFGWOnf5mjijGCz8FFzhuEEBE1G4GfRchFts674kyG0cKyNmkbldw572X6htbHPkMX4LCtDHxLMujiYei2rUnQu33nNGyT06uh35rSGxNg6SNUUX456aF2-TPD3pX1EK01yYQCk9TOXYIzK302V8c5Bh9Pj-_zl2r5-ryYPywrVYu6VFrZum1ZTRk1WhiKOa8pshwRpJnggk-pstxKrC0RdMqJxIoSMVXWWEkRJmNwc7i7S3HfmVyaTexSGF42NeMcz4hgZKBuD5RKMedkbLNLbjsoaDBq_uQ2tDnKHdi7A5uVK7K4GP6BfwGLp3tD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677183963</pqid></control><display><type>article</type><title>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Wang, Yue ; Zhang, Liangqi ; Liu, Hao ; Yin, Linmao ; Xiao, Yao ; Liu, Yong ; Zeng, Zhong</creator><creatorcontrib>Wang, Yue ; Zhang, Liangqi ; Liu, Hao ; Yin, Linmao ; Xiao, Yao ; Liu, Yong ; Zeng, Zhong</creatorcontrib><description>We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 < Γ ≤ 0.91 at Γr = 0.50 when the liquid bridge is heated from the upper disk. The energy analysis indicates that the instabilities for all cases are predominantly caused by the hydrothermal wave instability and the phenomenon of three transitions results from the variation of thermal energy transfer efficiency with the growth of the Marangoni number.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0090593</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aspect ratio ; Axisymmetric flow ; Disks ; Energy transfer ; Flow stability ; Fluid dynamics ; Free surfaces ; Laplace equation ; Liquid bridges ; Microgravity ; Oscillating flow ; Physics ; Prandtl number ; Spectral element method ; Stability analysis ; Static deformation ; Steady flow ; Thermal energy ; Thermocapillary flow ; Three dimensional flow ; Two dimensional flow</subject><ispartof>Physics of fluids (1994), 2022-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</citedby><cites>FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</cites><orcidid>0000-0002-0716-1611 ; 0000-0001-5899-8406 ; 0000-0002-0535-6845 ; 0000-0002-6342-3487 ; 0000-0001-6039-5786 ; 0000-0003-0782-4849 ; 0000-0002-9616-7117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Zhang, Liangqi</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yin, Linmao</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zeng, Zhong</creatorcontrib><title>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</title><title>Physics of fluids (1994)</title><description>We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 < Γ ≤ 0.91 at Γr = 0.50 when the liquid bridge is heated from the upper disk. The energy analysis indicates that the instabilities for all cases are predominantly caused by the hydrothermal wave instability and the phenomenon of three transitions results from the variation of thermal energy transfer efficiency with the growth of the Marangoni number.</description><subject>Aspect ratio</subject><subject>Axisymmetric flow</subject><subject>Disks</subject><subject>Energy transfer</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Laplace equation</subject><subject>Liquid bridges</subject><subject>Microgravity</subject><subject>Oscillating flow</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Spectral element method</subject><subject>Stability analysis</subject><subject>Static deformation</subject><subject>Steady flow</subject><subject>Thermal energy</subject><subject>Thermocapillary flow</subject><subject>Three dimensional flow</subject><subject>Two dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlcLUZNIkzVKKH4WCLnQ9ZPLRpqZJm2QYBX-8I-3a1bsPzn0PDgDXGE0wYuSeThASiApyAkYYzUTFGWOnf5mjijGCz8FFzhuEEBE1G4GfRchFts674kyG0cKyNmkbldw572X6htbHPkMX4LCtDHxLMujiYei2rUnQu33nNGyT06uh35rSGxNg6SNUUX456aF2-TPD3pX1EK01yYQCk9TOXYIzK302V8c5Bh9Pj-_zl2r5-ryYPywrVYu6VFrZum1ZTRk1WhiKOa8pshwRpJnggk-pstxKrC0RdMqJxIoSMVXWWEkRJmNwc7i7S3HfmVyaTexSGF42NeMcz4hgZKBuD5RKMedkbLNLbjsoaDBq_uQ2tDnKHdi7A5uVK7K4GP6BfwGLp3tD</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Wang, Yue</creator><creator>Zhang, Liangqi</creator><creator>Liu, Hao</creator><creator>Yin, Linmao</creator><creator>Xiao, Yao</creator><creator>Liu, Yong</creator><creator>Zeng, Zhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0716-1611</orcidid><orcidid>https://orcid.org/0000-0001-5899-8406</orcidid><orcidid>https://orcid.org/0000-0002-0535-6845</orcidid><orcidid>https://orcid.org/0000-0002-6342-3487</orcidid><orcidid>https://orcid.org/0000-0001-6039-5786</orcidid><orcidid>https://orcid.org/0000-0003-0782-4849</orcidid><orcidid>https://orcid.org/0000-0002-9616-7117</orcidid></search><sort><creationdate>202206</creationdate><title>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</title><author>Wang, Yue ; Zhang, Liangqi ; Liu, Hao ; Yin, Linmao ; Xiao, Yao ; Liu, Yong ; Zeng, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aspect ratio</topic><topic>Axisymmetric flow</topic><topic>Disks</topic><topic>Energy transfer</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Laplace equation</topic><topic>Liquid bridges</topic><topic>Microgravity</topic><topic>Oscillating flow</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Spectral element method</topic><topic>Stability analysis</topic><topic>Static deformation</topic><topic>Steady flow</topic><topic>Thermal energy</topic><topic>Thermocapillary flow</topic><topic>Three dimensional flow</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Zhang, Liangqi</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yin, Linmao</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zeng, Zhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Zhang, Liangqi</au><au>Liu, Hao</au><au>Yin, Linmao</au><au>Xiao, Yao</au><au>Liu, Yong</au><au>Zeng, Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We explore the geometric effects on the thermocapillary flow instabilities in large Prandtl number (Pr = 1.4) liquid bridges between two coaxial disks with different radii under microgravity, focusing on the impacts of radius ratio Γr and aspect ratio Γ. The static deformation of the free surface is concerned by the solution of the Young–Laplace equation, and the linear stability analysis based on spectral element method is conducted for accurate identification of the instability characteristic. We observe that the flow stability is generally improved with the decrease in radius ratio Γr or aspect ratio Γ, especially for the liquid bridge heated from the upper disk. The critical oscillation frequency experiences an abrupt drop around Γr = 0.56 as Γr decreases for the liquid bridge with the bottom disk heated. Moreover, three transitions between two-dimensional axisymmetric steady flow and three-dimensional oscillatory flow are observed within the interval 0.87 < Γ ≤ 0.91 at Γr = 0.50 when the liquid bridge is heated from the upper disk. The energy analysis indicates that the instabilities for all cases are predominantly caused by the hydrothermal wave instability and the phenomenon of three transitions results from the variation of thermal energy transfer efficiency with the growth of the Marangoni number.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090593</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0716-1611</orcidid><orcidid>https://orcid.org/0000-0001-5899-8406</orcidid><orcidid>https://orcid.org/0000-0002-0535-6845</orcidid><orcidid>https://orcid.org/0000-0002-6342-3487</orcidid><orcidid>https://orcid.org/0000-0001-6039-5786</orcidid><orcidid>https://orcid.org/0000-0003-0782-4849</orcidid><orcidid>https://orcid.org/0000-0002-9616-7117</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-06, Vol.34 (6) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2677183963 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会期刊回溯(NSTL购买) |
subjects | Aspect ratio Axisymmetric flow Disks Energy transfer Flow stability Fluid dynamics Free surfaces Laplace equation Liquid bridges Microgravity Oscillating flow Physics Prandtl number Spectral element method Stability analysis Static deformation Steady flow Thermal energy Thermocapillary flow Three dimensional flow Two dimensional flow |
title | Instabilities of thermocapillary flows in large Prandtl number liquid bridges between two coaxial disks with different radii |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instabilities%20of%20thermocapillary%20flows%20in%20large%20Prandtl%20number%20liquid%20bridges%20between%20two%20coaxial%20disks%20with%20different%20radii&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Yue&rft.date=2022-06&rft.volume=34&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0090593&rft_dat=%3Cproquest_cross%3E2677183963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-dcf2bb62565ed9e5177250f7030d6979745cf7fa1df395473a1c5394cfefa5013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677183963&rft_id=info:pmid/&rfr_iscdi=true |