Loading…

Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications

This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2022-06, Vol.33 (17), p.13826-13842
Main Authors: Mondal, Dhananjoy, Roy, Shubham, Bardhan, Souravi, Das, Ratnottam, Maity, Anupam, Chanda, Dipak Kr, Das, Solanky, Ghosh, Saheli, Basu, Ruma, Das, Sukhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063
cites cdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063
container_end_page 13842
container_issue 17
container_start_page 13826
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Mondal, Dhananjoy
Roy, Shubham
Bardhan, Souravi
Das, Ratnottam
Maity, Anupam
Chanda, Dipak Kr
Das, Solanky
Ghosh, Saheli
Basu, Ruma
Das, Sukhen
description This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10 −4 S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.
doi_str_mv 10.1007/s10854-022-08314-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677217712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677217712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdTWXtsm4k2G8gJfNiO5Cpj2pGTtJTVrBne_gRl_PJ7G1gjtXB3K-8__hQ-iAkiNKiDiOlMgsTQhjCZGcpkm-gSY0EzxJJXvYRBMyzUSSZoxto50YV4SQPOVygt7nxkDRYm_w2hbBxzZ0RdsFXWN48XXXWu-GpdPj45P2tXW2BVx2gFuPr-9nNwtc-sa66gRrbLoetLG1Bf56-6gCgMNQ9xXBl_D19omNDxgchOoVP-rwAj3qKqybpraFHuriHtoyuo6w_zt30d3ZfDG7SK5uzy9np1dJwSTPEyqplqUBkUpCl2ZKc8Y503makcyIbMlzqmFaSBAGuEgJBaOpXhooM0M0yfkuOhxzm-Cfu_4jauW74PpKxXIhGBWCsp5iIzXYiQGMaoJd6_CqKFGDfDXKV7189SNfDdF8PIo97CoIf9H_XH0Du52McQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677217712</pqid></control><display><type>article</type><title>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</title><source>Springer Nature</source><creator>Mondal, Dhananjoy ; Roy, Shubham ; Bardhan, Souravi ; Das, Ratnottam ; Maity, Anupam ; Chanda, Dipak Kr ; Das, Solanky ; Ghosh, Saheli ; Basu, Ruma ; Das, Sukhen</creator><creatorcontrib>Mondal, Dhananjoy ; Roy, Shubham ; Bardhan, Souravi ; Das, Ratnottam ; Maity, Anupam ; Chanda, Dipak Kr ; Das, Solanky ; Ghosh, Saheli ; Basu, Ruma ; Das, Sukhen</creatorcontrib><description>This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10 −4 S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-08314-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clay ; Clean energy ; Doping ; Electrode materials ; Electrodes ; Energy harvesting ; Fourier transforms ; Kaolinite ; Materials Science ; Multi wall carbon nanotubes ; Nanocomposites ; Optical and Electronic Materials ; Room temperature ; Stability analysis ; Surface properties ; Thermal stability ; Zeta potential</subject><ispartof>Journal of materials science. Materials in electronics, 2022-06, Vol.33 (17), p.13826-13842</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</citedby><cites>FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</cites><orcidid>0000-0001-8372-3076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mondal, Dhananjoy</creatorcontrib><creatorcontrib>Roy, Shubham</creatorcontrib><creatorcontrib>Bardhan, Souravi</creatorcontrib><creatorcontrib>Das, Ratnottam</creatorcontrib><creatorcontrib>Maity, Anupam</creatorcontrib><creatorcontrib>Chanda, Dipak Kr</creatorcontrib><creatorcontrib>Das, Solanky</creatorcontrib><creatorcontrib>Ghosh, Saheli</creatorcontrib><creatorcontrib>Basu, Ruma</creatorcontrib><creatorcontrib>Das, Sukhen</creatorcontrib><title>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10 −4 S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.</description><subject>Biocompatibility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Clean energy</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy harvesting</subject><subject>Fourier transforms</subject><subject>Kaolinite</subject><subject>Materials Science</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Room temperature</subject><subject>Stability analysis</subject><subject>Surface properties</subject><subject>Thermal stability</subject><subject>Zeta potential</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdTWXtsm4k2G8gJfNiO5Cpj2pGTtJTVrBne_gRl_PJ7G1gjtXB3K-8__hQ-iAkiNKiDiOlMgsTQhjCZGcpkm-gSY0EzxJJXvYRBMyzUSSZoxto50YV4SQPOVygt7nxkDRYm_w2hbBxzZ0RdsFXWN48XXXWu-GpdPj45P2tXW2BVx2gFuPr-9nNwtc-sa66gRrbLoetLG1Bf56-6gCgMNQ9xXBl_D19omNDxgchOoVP-rwAj3qKqybpraFHuriHtoyuo6w_zt30d3ZfDG7SK5uzy9np1dJwSTPEyqplqUBkUpCl2ZKc8Y503makcyIbMlzqmFaSBAGuEgJBaOpXhooM0M0yfkuOhxzm-Cfu_4jauW74PpKxXIhGBWCsp5iIzXYiQGMaoJd6_CqKFGDfDXKV7189SNfDdF8PIo97CoIf9H_XH0Du52McQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mondal, Dhananjoy</creator><creator>Roy, Shubham</creator><creator>Bardhan, Souravi</creator><creator>Das, Ratnottam</creator><creator>Maity, Anupam</creator><creator>Chanda, Dipak Kr</creator><creator>Das, Solanky</creator><creator>Ghosh, Saheli</creator><creator>Basu, Ruma</creator><creator>Das, Sukhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8372-3076</orcidid></search><sort><creationdate>20220601</creationdate><title>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</title><author>Mondal, Dhananjoy ; Roy, Shubham ; Bardhan, Souravi ; Das, Ratnottam ; Maity, Anupam ; Chanda, Dipak Kr ; Das, Solanky ; Ghosh, Saheli ; Basu, Ruma ; Das, Sukhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Clean energy</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy harvesting</topic><topic>Fourier transforms</topic><topic>Kaolinite</topic><topic>Materials Science</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Room temperature</topic><topic>Stability analysis</topic><topic>Surface properties</topic><topic>Thermal stability</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Dhananjoy</creatorcontrib><creatorcontrib>Roy, Shubham</creatorcontrib><creatorcontrib>Bardhan, Souravi</creatorcontrib><creatorcontrib>Das, Ratnottam</creatorcontrib><creatorcontrib>Maity, Anupam</creatorcontrib><creatorcontrib>Chanda, Dipak Kr</creatorcontrib><creatorcontrib>Das, Solanky</creatorcontrib><creatorcontrib>Ghosh, Saheli</creatorcontrib><creatorcontrib>Basu, Ruma</creatorcontrib><creatorcontrib>Das, Sukhen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Dhananjoy</au><au>Roy, Shubham</au><au>Bardhan, Souravi</au><au>Das, Ratnottam</au><au>Maity, Anupam</au><au>Chanda, Dipak Kr</au><au>Das, Solanky</au><au>Ghosh, Saheli</au><au>Basu, Ruma</au><au>Das, Sukhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>17</issue><spage>13826</spage><epage>13842</epage><pages>13826-13842</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10 −4 S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-08314-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8372-3076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-06, Vol.33 (17), p.13826-13842
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2677217712
source Springer Nature
subjects Biocompatibility
Characterization and Evaluation of Materials
Chemistry and Materials Science
Clay
Clean energy
Doping
Electrode materials
Electrodes
Energy harvesting
Fourier transforms
Kaolinite
Materials Science
Multi wall carbon nanotubes
Nanocomposites
Optical and Electronic Materials
Room temperature
Stability analysis
Surface properties
Thermal stability
Zeta potential
title Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microstructural%20evolution%20of%20natural%20kaolinite%20due%20to%20MWCNT%20doping:%20a%20futuristic%20%E2%80%98green%20electrode%E2%80%99%20for%20energy%20harvesting%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Mondal,%20Dhananjoy&rft.date=2022-06-01&rft.volume=33&rft.issue=17&rft.spage=13826&rft.epage=13842&rft.pages=13826-13842&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-08314-6&rft_dat=%3Cproquest_cross%3E2677217712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677217712&rft_id=info:pmid/&rfr_iscdi=true