Loading…
Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications
This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2022-06, Vol.33 (17), p.13826-13842 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063 |
---|---|
cites | cdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063 |
container_end_page | 13842 |
container_issue | 17 |
container_start_page | 13826 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 33 |
creator | Mondal, Dhananjoy Roy, Shubham Bardhan, Souravi Das, Ratnottam Maity, Anupam Chanda, Dipak Kr Das, Solanky Ghosh, Saheli Basu, Ruma Das, Sukhen |
description | This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10
−4
S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices. |
doi_str_mv | 10.1007/s10854-022-08314-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677217712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677217712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdTWXtsm4k2G8gJfNiO5Cpj2pGTtJTVrBne_gRl_PJ7G1gjtXB3K-8__hQ-iAkiNKiDiOlMgsTQhjCZGcpkm-gSY0EzxJJXvYRBMyzUSSZoxto50YV4SQPOVygt7nxkDRYm_w2hbBxzZ0RdsFXWN48XXXWu-GpdPj45P2tXW2BVx2gFuPr-9nNwtc-sa66gRrbLoetLG1Bf56-6gCgMNQ9xXBl_D19omNDxgchOoVP-rwAj3qKqybpraFHuriHtoyuo6w_zt30d3ZfDG7SK5uzy9np1dJwSTPEyqplqUBkUpCl2ZKc8Y503makcyIbMlzqmFaSBAGuEgJBaOpXhooM0M0yfkuOhxzm-Cfu_4jauW74PpKxXIhGBWCsp5iIzXYiQGMaoJd6_CqKFGDfDXKV7189SNfDdF8PIo97CoIf9H_XH0Du52McQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677217712</pqid></control><display><type>article</type><title>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</title><source>Springer Nature</source><creator>Mondal, Dhananjoy ; Roy, Shubham ; Bardhan, Souravi ; Das, Ratnottam ; Maity, Anupam ; Chanda, Dipak Kr ; Das, Solanky ; Ghosh, Saheli ; Basu, Ruma ; Das, Sukhen</creator><creatorcontrib>Mondal, Dhananjoy ; Roy, Shubham ; Bardhan, Souravi ; Das, Ratnottam ; Maity, Anupam ; Chanda, Dipak Kr ; Das, Solanky ; Ghosh, Saheli ; Basu, Ruma ; Das, Sukhen</creatorcontrib><description>This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10
−4
S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-08314-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clay ; Clean energy ; Doping ; Electrode materials ; Electrodes ; Energy harvesting ; Fourier transforms ; Kaolinite ; Materials Science ; Multi wall carbon nanotubes ; Nanocomposites ; Optical and Electronic Materials ; Room temperature ; Stability analysis ; Surface properties ; Thermal stability ; Zeta potential</subject><ispartof>Journal of materials science. Materials in electronics, 2022-06, Vol.33 (17), p.13826-13842</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</citedby><cites>FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</cites><orcidid>0000-0001-8372-3076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mondal, Dhananjoy</creatorcontrib><creatorcontrib>Roy, Shubham</creatorcontrib><creatorcontrib>Bardhan, Souravi</creatorcontrib><creatorcontrib>Das, Ratnottam</creatorcontrib><creatorcontrib>Maity, Anupam</creatorcontrib><creatorcontrib>Chanda, Dipak Kr</creatorcontrib><creatorcontrib>Das, Solanky</creatorcontrib><creatorcontrib>Ghosh, Saheli</creatorcontrib><creatorcontrib>Basu, Ruma</creatorcontrib><creatorcontrib>Das, Sukhen</creatorcontrib><title>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10
−4
S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.</description><subject>Biocompatibility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Clean energy</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy harvesting</subject><subject>Fourier transforms</subject><subject>Kaolinite</subject><subject>Materials Science</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Room temperature</subject><subject>Stability analysis</subject><subject>Surface properties</subject><subject>Thermal stability</subject><subject>Zeta potential</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdTWXtsm4k2G8gJfNiO5Cpj2pGTtJTVrBne_gRl_PJ7G1gjtXB3K-8__hQ-iAkiNKiDiOlMgsTQhjCZGcpkm-gSY0EzxJJXvYRBMyzUSSZoxto50YV4SQPOVygt7nxkDRYm_w2hbBxzZ0RdsFXWN48XXXWu-GpdPj45P2tXW2BVx2gFuPr-9nNwtc-sa66gRrbLoetLG1Bf56-6gCgMNQ9xXBl_D19omNDxgchOoVP-rwAj3qKqybpraFHuriHtoyuo6w_zt30d3ZfDG7SK5uzy9np1dJwSTPEyqplqUBkUpCl2ZKc8Y503makcyIbMlzqmFaSBAGuEgJBaOpXhooM0M0yfkuOhxzm-Cfu_4jauW74PpKxXIhGBWCsp5iIzXYiQGMaoJd6_CqKFGDfDXKV7189SNfDdF8PIo97CoIf9H_XH0Du52McQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mondal, Dhananjoy</creator><creator>Roy, Shubham</creator><creator>Bardhan, Souravi</creator><creator>Das, Ratnottam</creator><creator>Maity, Anupam</creator><creator>Chanda, Dipak Kr</creator><creator>Das, Solanky</creator><creator>Ghosh, Saheli</creator><creator>Basu, Ruma</creator><creator>Das, Sukhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8372-3076</orcidid></search><sort><creationdate>20220601</creationdate><title>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</title><author>Mondal, Dhananjoy ; Roy, Shubham ; Bardhan, Souravi ; Das, Ratnottam ; Maity, Anupam ; Chanda, Dipak Kr ; Das, Solanky ; Ghosh, Saheli ; Basu, Ruma ; Das, Sukhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Clean energy</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy harvesting</topic><topic>Fourier transforms</topic><topic>Kaolinite</topic><topic>Materials Science</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Room temperature</topic><topic>Stability analysis</topic><topic>Surface properties</topic><topic>Thermal stability</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Dhananjoy</creatorcontrib><creatorcontrib>Roy, Shubham</creatorcontrib><creatorcontrib>Bardhan, Souravi</creatorcontrib><creatorcontrib>Das, Ratnottam</creatorcontrib><creatorcontrib>Maity, Anupam</creatorcontrib><creatorcontrib>Chanda, Dipak Kr</creatorcontrib><creatorcontrib>Das, Solanky</creatorcontrib><creatorcontrib>Ghosh, Saheli</creatorcontrib><creatorcontrib>Basu, Ruma</creatorcontrib><creatorcontrib>Das, Sukhen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Dhananjoy</au><au>Roy, Shubham</au><au>Bardhan, Souravi</au><au>Das, Ratnottam</au><au>Maity, Anupam</au><au>Chanda, Dipak Kr</au><au>Das, Solanky</au><au>Ghosh, Saheli</au><au>Basu, Ruma</au><au>Das, Sukhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>17</issue><spage>13826</spage><epage>13842</epage><pages>13826-13842</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This study reports the development of natural kaolinite clay-based biocompatible electrode material, which can be a potential alternative for commercial electrodes. The nano-clay has been modified by intercalating multi-walled carbon nanotubes (MWCNT) at different concentrations (0.5%, 1.0%, and 1.5% w/w ratio). Initially, the doping-dependent microstructural alterations of the nanocomposites were determined by the Rietveld refinement technique. Some other features like purity, morphology, surface characteristics, etc. of the nanocomposites have been estimated by Fourier transform infrared spectroscopy (FTIR), electron microscopy, zeta potential, and BET (Brunauer–Emmett–Teller) techniques. Moreover, the thermal stability of this system has been assessed, which shows temperature stability up to 500 ºC. This is probably the first report of making an efficient electrode material from MWCNT modified natural kaolinite having an electrical permittivity of 3850 and an ac conductivity of 10
−4
S/m at room temperature. Additionally, the high specific capacitance of the modified clay (22.4 F/g) suggests the efficiency of the material as an electrode. The cyclic voltammogram data suggests the presence of redox relaxations, making the modified clays suitable candidates for electrode application. This type of natural clay-mediated biocompatible electrode material could be a promising alternative for low-cost energy harvesting devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-08314-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8372-3076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2022-06, Vol.33 (17), p.13826-13842 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2677217712 |
source | Springer Nature |
subjects | Biocompatibility Characterization and Evaluation of Materials Chemistry and Materials Science Clay Clean energy Doping Electrode materials Electrodes Energy harvesting Fourier transforms Kaolinite Materials Science Multi wall carbon nanotubes Nanocomposites Optical and Electronic Materials Room temperature Stability analysis Surface properties Thermal stability Zeta potential |
title | Effect of microstructural evolution of natural kaolinite due to MWCNT doping: a futuristic ‘green electrode’ for energy harvesting applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microstructural%20evolution%20of%20natural%20kaolinite%20due%20to%20MWCNT%20doping:%20a%20futuristic%20%E2%80%98green%20electrode%E2%80%99%20for%20energy%20harvesting%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Mondal,%20Dhananjoy&rft.date=2022-06-01&rft.volume=33&rft.issue=17&rft.spage=13826&rft.epage=13842&rft.pages=13826-13842&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-08314-6&rft_dat=%3Cproquest_cross%3E2677217712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2836-181a8dfe74801bf9162332a64505f75b361ae9c8e7fe37401efa1abfed5f0a063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677217712&rft_id=info:pmid/&rfr_iscdi=true |