Loading…
Electronic viscosity and energy relaxation in neutral graphene
We explore hydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry. In the absence of magnetic field, the bulk Ohmic charge flow and the hydrodynamic energy flow are decoupled. However, the energy flow does affect the overall resistance of the system through viscous dissipation a...
Saved in:
Published in: | arXiv.org 2022-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explore hydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry. In the absence of magnetic field, the bulk Ohmic charge flow and the hydrodynamic energy flow are decoupled. However, the energy flow does affect the overall resistance of the system through viscous dissipation and energy relaxation that has to be compensated by the work done by the current source. Solving the hydrodynamic equations, we find that local temperature and electric potential are discontinuous at the interfaces with the leads as well as the device resistance and argue that this makes Corbino geometry a feasible choice for an experimental observation of the Dirac fluid. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2206.07414 |