Loading…

An apodization method for guided-mode resonance grating with waveguide cavity

A cavity-resonator-integrated guided-mode resonance mirror (CRIGM) consisting of a small-aperture grating coupler integrated in a waveguide cavity on a high-reflection substrate reflects an incident free-space wave with reflection-phase variation of 2 π in a resonance condition. CRIGM has been inves...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2022-08, Vol.61 (SK), p.SK1008
Main Authors: Watanabe, Akari, Ozawa, Keisuke, Ueda, Ryohei, Inoue, Junichi, Kintaka, Kenji, Ura, Shogo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943
cites cdi_FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943
container_end_page
container_issue SK
container_start_page SK1008
container_title Japanese Journal of Applied Physics
container_volume 61
creator Watanabe, Akari
Ozawa, Keisuke
Ueda, Ryohei
Inoue, Junichi
Kintaka, Kenji
Ura, Shogo
description A cavity-resonator-integrated guided-mode resonance mirror (CRIGM) consisting of a small-aperture grating coupler integrated in a waveguide cavity on a high-reflection substrate reflects an incident free-space wave with reflection-phase variation of 2 π in a resonance condition. CRIGM has been investigated as a key component in surface mount packaging of VCSEL for future optical interconnects but the reflectance of a fabricated CRIGM was not sufficient. Matching of electric field distribution between an incident Gaussian beam and the reflected beam from the CRIGM is discussed for improving the reflectance. A new apodization method of grating-tooth shift is proposed for the field-distribution matching. CRIGMs with the new and a well-known fill-factor apodization methods are characterized by numerical simulation. It is predicted that the previously measured reflectance will be improved by more than 1.2 dB by introducing either of the apodization methods.
doi_str_mv 10.35848/1347-4065/ac629c
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2677650656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677650656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAk4fVfG_2WIpfWPFg7yG7SdosdrNmty3115t2RS8KAy8zPPMO8wJwidEN5ZLJW0xZnjEk-K2uBCmqIzD6GR2DEUIEZ6wg5BScdV2dWsEZHoGXSQN1G4z_1L0PDVzZfhkMdCHCxdoba7JVMBZG24VGN5WFi5jAZgG3vl_Crd7YAwYrvfH97hycOP3e2YtvHYP5_d18-pjNXh-eppNZVlEp-0xIRwxC2jGsKS11WeaFK0VpSycKjhxFjGGGuDSG8aSaceGwM45UDBeMjsHVYNvG8LG2Xa_qsI5NuqiIyHPB088iUXigqhi6Llqn2uhXOu4URuoQmtonpPYJqSG0tHM97PjQ_prWtW6VwOrtORVGSKrWuMRmf7D_e38BEFh8Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677650656</pqid></control><display><type>article</type><title>An apodization method for guided-mode resonance grating with waveguide cavity</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics</source><creator>Watanabe, Akari ; Ozawa, Keisuke ; Ueda, Ryohei ; Inoue, Junichi ; Kintaka, Kenji ; Ura, Shogo</creator><creatorcontrib>Watanabe, Akari ; Ozawa, Keisuke ; Ueda, Ryohei ; Inoue, Junichi ; Kintaka, Kenji ; Ura, Shogo</creatorcontrib><description>A cavity-resonator-integrated guided-mode resonance mirror (CRIGM) consisting of a small-aperture grating coupler integrated in a waveguide cavity on a high-reflection substrate reflects an incident free-space wave with reflection-phase variation of 2 π in a resonance condition. CRIGM has been investigated as a key component in surface mount packaging of VCSEL for future optical interconnects but the reflectance of a fabricated CRIGM was not sufficient. Matching of electric field distribution between an incident Gaussian beam and the reflected beam from the CRIGM is discussed for improving the reflectance. A new apodization method of grating-tooth shift is proposed for the field-distribution matching. CRIGMs with the new and a well-known fill-factor apodization methods are characterized by numerical simulation. It is predicted that the previously measured reflectance will be improved by more than 1.2 dB by introducing either of the apodization methods.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ac629c</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Apodization ; Cavity resonators ; Electric fields ; External mirrors ; Gaussian beams (optics) ; Grating apodization ; Grating couplers ; Guided-mode resonance ; Matching ; Numerical methods ; Optical interconnects ; Reflectance ; Resonance ; Substrates ; Vertical-cavity surface-emitting laser ; Wave reflection ; Waveguide cavities ; Waveguides</subject><ispartof>Japanese Journal of Applied Physics, 2022-08, Vol.61 (SK), p.SK1008</ispartof><rights>2022 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943</citedby><cites>FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ac629c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,53840</link.rule.ids></links><search><creatorcontrib>Watanabe, Akari</creatorcontrib><creatorcontrib>Ozawa, Keisuke</creatorcontrib><creatorcontrib>Ueda, Ryohei</creatorcontrib><creatorcontrib>Inoue, Junichi</creatorcontrib><creatorcontrib>Kintaka, Kenji</creatorcontrib><creatorcontrib>Ura, Shogo</creatorcontrib><title>An apodization method for guided-mode resonance grating with waveguide cavity</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A cavity-resonator-integrated guided-mode resonance mirror (CRIGM) consisting of a small-aperture grating coupler integrated in a waveguide cavity on a high-reflection substrate reflects an incident free-space wave with reflection-phase variation of 2 π in a resonance condition. CRIGM has been investigated as a key component in surface mount packaging of VCSEL for future optical interconnects but the reflectance of a fabricated CRIGM was not sufficient. Matching of electric field distribution between an incident Gaussian beam and the reflected beam from the CRIGM is discussed for improving the reflectance. A new apodization method of grating-tooth shift is proposed for the field-distribution matching. CRIGMs with the new and a well-known fill-factor apodization methods are characterized by numerical simulation. It is predicted that the previously measured reflectance will be improved by more than 1.2 dB by introducing either of the apodization methods.</description><subject>Apodization</subject><subject>Cavity resonators</subject><subject>Electric fields</subject><subject>External mirrors</subject><subject>Gaussian beams (optics)</subject><subject>Grating apodization</subject><subject>Grating couplers</subject><subject>Guided-mode resonance</subject><subject>Matching</subject><subject>Numerical methods</subject><subject>Optical interconnects</subject><subject>Reflectance</subject><subject>Resonance</subject><subject>Substrates</subject><subject>Vertical-cavity surface-emitting laser</subject><subject>Wave reflection</subject><subject>Waveguide cavities</subject><subject>Waveguides</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAk4fVfG_2WIpfWPFg7yG7SdosdrNmty3115t2RS8KAy8zPPMO8wJwidEN5ZLJW0xZnjEk-K2uBCmqIzD6GR2DEUIEZ6wg5BScdV2dWsEZHoGXSQN1G4z_1L0PDVzZfhkMdCHCxdoba7JVMBZG24VGN5WFi5jAZgG3vl_Crd7YAwYrvfH97hycOP3e2YtvHYP5_d18-pjNXh-eppNZVlEp-0xIRwxC2jGsKS11WeaFK0VpSycKjhxFjGGGuDSG8aSaceGwM45UDBeMjsHVYNvG8LG2Xa_qsI5NuqiIyHPB088iUXigqhi6Llqn2uhXOu4URuoQmtonpPYJqSG0tHM97PjQ_prWtW6VwOrtORVGSKrWuMRmf7D_e38BEFh8Pg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Watanabe, Akari</creator><creator>Ozawa, Keisuke</creator><creator>Ueda, Ryohei</creator><creator>Inoue, Junichi</creator><creator>Kintaka, Kenji</creator><creator>Ura, Shogo</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220801</creationdate><title>An apodization method for guided-mode resonance grating with waveguide cavity</title><author>Watanabe, Akari ; Ozawa, Keisuke ; Ueda, Ryohei ; Inoue, Junichi ; Kintaka, Kenji ; Ura, Shogo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apodization</topic><topic>Cavity resonators</topic><topic>Electric fields</topic><topic>External mirrors</topic><topic>Gaussian beams (optics)</topic><topic>Grating apodization</topic><topic>Grating couplers</topic><topic>Guided-mode resonance</topic><topic>Matching</topic><topic>Numerical methods</topic><topic>Optical interconnects</topic><topic>Reflectance</topic><topic>Resonance</topic><topic>Substrates</topic><topic>Vertical-cavity surface-emitting laser</topic><topic>Wave reflection</topic><topic>Waveguide cavities</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Akari</creatorcontrib><creatorcontrib>Ozawa, Keisuke</creatorcontrib><creatorcontrib>Ueda, Ryohei</creatorcontrib><creatorcontrib>Inoue, Junichi</creatorcontrib><creatorcontrib>Kintaka, Kenji</creatorcontrib><creatorcontrib>Ura, Shogo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Akari</au><au>Ozawa, Keisuke</au><au>Ueda, Ryohei</au><au>Inoue, Junichi</au><au>Kintaka, Kenji</au><au>Ura, Shogo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An apodization method for guided-mode resonance grating with waveguide cavity</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>61</volume><issue>SK</issue><spage>SK1008</spage><pages>SK1008-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A cavity-resonator-integrated guided-mode resonance mirror (CRIGM) consisting of a small-aperture grating coupler integrated in a waveguide cavity on a high-reflection substrate reflects an incident free-space wave with reflection-phase variation of 2 π in a resonance condition. CRIGM has been investigated as a key component in surface mount packaging of VCSEL for future optical interconnects but the reflectance of a fabricated CRIGM was not sufficient. Matching of electric field distribution between an incident Gaussian beam and the reflected beam from the CRIGM is discussed for improving the reflectance. A new apodization method of grating-tooth shift is proposed for the field-distribution matching. CRIGMs with the new and a well-known fill-factor apodization methods are characterized by numerical simulation. It is predicted that the previously measured reflectance will be improved by more than 1.2 dB by introducing either of the apodization methods.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ac629c</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2022-08, Vol.61 (SK), p.SK1008
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2677650656
source Institute of Physics IOPscience extra; Institute of Physics
subjects Apodization
Cavity resonators
Electric fields
External mirrors
Gaussian beams (optics)
Grating apodization
Grating couplers
Guided-mode resonance
Matching
Numerical methods
Optical interconnects
Reflectance
Resonance
Substrates
Vertical-cavity surface-emitting laser
Wave reflection
Waveguide cavities
Waveguides
title An apodization method for guided-mode resonance grating with waveguide cavity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20apodization%20method%20for%20guided-mode%20resonance%20grating%20with%20waveguide%20cavity&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Watanabe,%20Akari&rft.date=2022-08-01&rft.volume=61&rft.issue=SK&rft.spage=SK1008&rft.pages=SK1008-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ac629c&rft_dat=%3Cproquest_iop_j%3E2677650656%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-68f2d00af41a33babb79fb6bebf6950f304414058dd45405a456f1fdf2c41943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677650656&rft_id=info:pmid/&rfr_iscdi=true