Loading…

Modelling Heat Pump Systems in Low-Carbon Energy Systems With Significant Cross-Sectoral Integration

Pursuing long-term climate stabilisation scenarios subjects power, heat, industry, and transport sectors to undergo fundamental transitions towards fully renewable energy systems. Cost-efficient strategies involve the integration of energy vectors, introducing additional cross-sectoral electricity d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2022-07, Vol.37 (4), p.3259-3273
Main Authors: Hartel, Philipp, Ghosh, Debraj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pursuing long-term climate stabilisation scenarios subjects power, heat, industry, and transport sectors to undergo fundamental transitions towards fully renewable energy systems. Cost-efficient strategies involve the integration of energy vectors, introducing additional cross-sectoral electricity demand and flexibility for traditional power sectors. When performing cross-sectoral capacity expansion planning (CEP) analyses of low-carbon energy systems for decision making support, the underlying mathematical optimisation problems easily become intractable. To overcome the computational challenges of optimising real-world instances of future energy systems with adequate representations of temporal, spatial, and technological detail, this work investigates different modelling approaches for flexible heat pump systems at the power and heat sector interface of the long-term energy system model SCOPE SD. A comparative case study carried out for a net-neutral decarbonisation scenario in Europe and Germany highlights the implications of using model aggregation techniques. It is shown that the proposed modelling approaches can present computational benefits at only limited cost of result accuracy. However, poorly implemented grouping strategies can lead to high result inaccuracies and even a lack of performance improvements.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2020.3023474