Loading…
A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets
Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable c...
Saved in:
Published in: | Mathematical finance 2022-07, Vol.32 (3), p.779-824 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03 |
---|---|
cites | cdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03 |
container_end_page | 824 |
container_issue | 3 |
container_start_page | 779 |
container_title | Mathematical finance |
container_volume | 32 |
creator | Shrivats, Arvind V. Firoozi, Dena Jaimungal, Sebastian |
description | Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study. |
doi_str_mv | 10.1111/mafi.12345 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678193001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678193001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2ImdxMuq4qdSERtYW7YzLi75ae1EVXccgTNyElzCmreZWXwz8-YhdE3JjEbdNcq6GU0zxk_QhLK8SITI-SmaEJGThOZpcY4uQtgQQhhjxQSpOW5Atd-fX9ZBXeG1agCr7dZ3yrzjvsOwG1zttHdDg7feGdeusWtx6GrlsYcW9krXgGPj1wdswPfOOqN6wI3yH9CHS3RmVR3g6q9O0dvD_eviKVm9PC4X81ViMkF5UgqIojzLtBWUcF0pbajJFDG2yFMmoCQsBW4Y1wxsaYiudMWromJGgCHZFN2Me6P33QChl5tu8G08KdO8KKnICKGRuh0p47sQPFgZn4pOD5ISeYxQHiOUvxFGmI7w3tVw-IeUz_OH5TjzAy4qdm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678193001</pqid></control><display><type>article</type><title>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>EconLit with Full Text</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Shrivats, Arvind V. ; Firoozi, Dena ; Jaimungal, Sebastian</creator><creatorcontrib>Shrivats, Arvind V. ; Firoozi, Dena ; Jaimungal, Sebastian</creatorcontrib><description>Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/mafi.12345</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Alternative energy sources ; cap and trade ; commodity markets ; Differential equations ; Equilibrium ; equilibrium pricing ; Game theory ; Games ; Lower bounds ; Markets ; McKean–Vlasov ; mean‐field games ; Noncompliance ; Optimization ; Renewable energy ; Renewable resources ; Simulation ; Solar energy ; SREC ; Trading ; Uncertainty ; Uniqueness ; variational analysis</subject><ispartof>Mathematical finance, 2022-07, Vol.32 (3), p.779-824</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</citedby><cites>FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</cites><orcidid>0000-0001-9639-3889 ; 0000-0002-0433-6404 ; 0000-0002-0193-0993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33200</link.rule.ids></links><search><creatorcontrib>Shrivats, Arvind V.</creatorcontrib><creatorcontrib>Firoozi, Dena</creatorcontrib><creatorcontrib>Jaimungal, Sebastian</creatorcontrib><title>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</title><title>Mathematical finance</title><description>Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.</description><subject>Alternative energy sources</subject><subject>cap and trade</subject><subject>commodity markets</subject><subject>Differential equations</subject><subject>Equilibrium</subject><subject>equilibrium pricing</subject><subject>Game theory</subject><subject>Games</subject><subject>Lower bounds</subject><subject>Markets</subject><subject>McKean–Vlasov</subject><subject>mean‐field games</subject><subject>Noncompliance</subject><subject>Optimization</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>SREC</subject><subject>Trading</subject><subject>Uncertainty</subject><subject>Uniqueness</subject><subject>variational analysis</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2ImdxMuq4qdSERtYW7YzLi75ae1EVXccgTNyElzCmreZWXwz8-YhdE3JjEbdNcq6GU0zxk_QhLK8SITI-SmaEJGThOZpcY4uQtgQQhhjxQSpOW5Atd-fX9ZBXeG1agCr7dZ3yrzjvsOwG1zttHdDg7feGdeusWtx6GrlsYcW9krXgGPj1wdswPfOOqN6wI3yH9CHS3RmVR3g6q9O0dvD_eviKVm9PC4X81ViMkF5UgqIojzLtBWUcF0pbajJFDG2yFMmoCQsBW4Y1wxsaYiudMWromJGgCHZFN2Me6P33QChl5tu8G08KdO8KKnICKGRuh0p47sQPFgZn4pOD5ISeYxQHiOUvxFGmI7w3tVw-IeUz_OH5TjzAy4qdm4</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Shrivats, Arvind V.</creator><creator>Firoozi, Dena</creator><creator>Jaimungal, Sebastian</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9639-3889</orcidid><orcidid>https://orcid.org/0000-0002-0433-6404</orcidid><orcidid>https://orcid.org/0000-0002-0193-0993</orcidid></search><sort><creationdate>202207</creationdate><title>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</title><author>Shrivats, Arvind V. ; Firoozi, Dena ; Jaimungal, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>cap and trade</topic><topic>commodity markets</topic><topic>Differential equations</topic><topic>Equilibrium</topic><topic>equilibrium pricing</topic><topic>Game theory</topic><topic>Games</topic><topic>Lower bounds</topic><topic>Markets</topic><topic>McKean–Vlasov</topic><topic>mean‐field games</topic><topic>Noncompliance</topic><topic>Optimization</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>SREC</topic><topic>Trading</topic><topic>Uncertainty</topic><topic>Uniqueness</topic><topic>variational analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrivats, Arvind V.</creatorcontrib><creatorcontrib>Firoozi, Dena</creatorcontrib><creatorcontrib>Jaimungal, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrivats, Arvind V.</au><au>Firoozi, Dena</au><au>Jaimungal, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</atitle><jtitle>Mathematical finance</jtitle><date>2022-07</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>779</spage><epage>824</epage><pages>779-824</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/mafi.12345</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0001-9639-3889</orcidid><orcidid>https://orcid.org/0000-0002-0433-6404</orcidid><orcidid>https://orcid.org/0000-0002-0193-0993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1627 |
ispartof | Mathematical finance, 2022-07, Vol.32 (3), p.779-824 |
issn | 0960-1627 1467-9965 |
language | eng |
recordid | cdi_proquest_journals_2678193001 |
source | International Bibliography of the Social Sciences (IBSS); Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); EconLit with Full Text; Business Source Ultimate (EBSCOHost) |
subjects | Alternative energy sources cap and trade commodity markets Differential equations Equilibrium equilibrium pricing Game theory Games Lower bounds Markets McKean–Vlasov mean‐field games Noncompliance Optimization Renewable energy Renewable resources Simulation Solar energy SREC Trading Uncertainty Uniqueness variational analysis |
title | A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mean%E2%80%90field%20game%20approach%20to%20equilibrium%20pricing%20in%20solar%20renewable%20energy%20certificate%20markets&rft.jtitle=Mathematical%20finance&rft.au=Shrivats,%20Arvind%20V.&rft.date=2022-07&rft.volume=32&rft.issue=3&rft.spage=779&rft.epage=824&rft.pages=779-824&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/mafi.12345&rft_dat=%3Cproquest_cross%3E2678193001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678193001&rft_id=info:pmid/&rfr_iscdi=true |