Loading…

A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets

Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable c...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical finance 2022-07, Vol.32 (3), p.779-824
Main Authors: Shrivats, Arvind V., Firoozi, Dena, Jaimungal, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03
cites cdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03
container_end_page 824
container_issue 3
container_start_page 779
container_title Mathematical finance
container_volume 32
creator Shrivats, Arvind V.
Firoozi, Dena
Jaimungal, Sebastian
description Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.
doi_str_mv 10.1111/mafi.12345
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678193001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678193001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2ImdxMuq4qdSERtYW7YzLi75ae1EVXccgTNyElzCmreZWXwz8-YhdE3JjEbdNcq6GU0zxk_QhLK8SITI-SmaEJGThOZpcY4uQtgQQhhjxQSpOW5Atd-fX9ZBXeG1agCr7dZ3yrzjvsOwG1zttHdDg7feGdeusWtx6GrlsYcW9krXgGPj1wdswPfOOqN6wI3yH9CHS3RmVR3g6q9O0dvD_eviKVm9PC4X81ViMkF5UgqIojzLtBWUcF0pbajJFDG2yFMmoCQsBW4Y1wxsaYiudMWromJGgCHZFN2Me6P33QChl5tu8G08KdO8KKnICKGRuh0p47sQPFgZn4pOD5ISeYxQHiOUvxFGmI7w3tVw-IeUz_OH5TjzAy4qdm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678193001</pqid></control><display><type>article</type><title>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>EconLit with Full Text</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Shrivats, Arvind V. ; Firoozi, Dena ; Jaimungal, Sebastian</creator><creatorcontrib>Shrivats, Arvind V. ; Firoozi, Dena ; Jaimungal, Sebastian</creatorcontrib><description>Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/mafi.12345</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Alternative energy sources ; cap and trade ; commodity markets ; Differential equations ; Equilibrium ; equilibrium pricing ; Game theory ; Games ; Lower bounds ; Markets ; McKean–Vlasov ; mean‐field games ; Noncompliance ; Optimization ; Renewable energy ; Renewable resources ; Simulation ; Solar energy ; SREC ; Trading ; Uncertainty ; Uniqueness ; variational analysis</subject><ispartof>Mathematical finance, 2022-07, Vol.32 (3), p.779-824</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</citedby><cites>FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</cites><orcidid>0000-0001-9639-3889 ; 0000-0002-0433-6404 ; 0000-0002-0193-0993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33200</link.rule.ids></links><search><creatorcontrib>Shrivats, Arvind V.</creatorcontrib><creatorcontrib>Firoozi, Dena</creatorcontrib><creatorcontrib>Jaimungal, Sebastian</creatorcontrib><title>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</title><title>Mathematical finance</title><description>Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.</description><subject>Alternative energy sources</subject><subject>cap and trade</subject><subject>commodity markets</subject><subject>Differential equations</subject><subject>Equilibrium</subject><subject>equilibrium pricing</subject><subject>Game theory</subject><subject>Games</subject><subject>Lower bounds</subject><subject>Markets</subject><subject>McKean–Vlasov</subject><subject>mean‐field games</subject><subject>Noncompliance</subject><subject>Optimization</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Simulation</subject><subject>Solar energy</subject><subject>SREC</subject><subject>Trading</subject><subject>Uncertainty</subject><subject>Uniqueness</subject><subject>variational analysis</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2ImdxMuq4qdSERtYW7YzLi75ae1EVXccgTNyElzCmreZWXwz8-YhdE3JjEbdNcq6GU0zxk_QhLK8SITI-SmaEJGThOZpcY4uQtgQQhhjxQSpOW5Atd-fX9ZBXeG1agCr7dZ3yrzjvsOwG1zttHdDg7feGdeusWtx6GrlsYcW9krXgGPj1wdswPfOOqN6wI3yH9CHS3RmVR3g6q9O0dvD_eviKVm9PC4X81ViMkF5UgqIojzLtBWUcF0pbajJFDG2yFMmoCQsBW4Y1wxsaYiudMWromJGgCHZFN2Me6P33QChl5tu8G08KdO8KKnICKGRuh0p47sQPFgZn4pOD5ISeYxQHiOUvxFGmI7w3tVw-IeUz_OH5TjzAy4qdm4</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Shrivats, Arvind V.</creator><creator>Firoozi, Dena</creator><creator>Jaimungal, Sebastian</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9639-3889</orcidid><orcidid>https://orcid.org/0000-0002-0433-6404</orcidid><orcidid>https://orcid.org/0000-0002-0193-0993</orcidid></search><sort><creationdate>202207</creationdate><title>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</title><author>Shrivats, Arvind V. ; Firoozi, Dena ; Jaimungal, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>cap and trade</topic><topic>commodity markets</topic><topic>Differential equations</topic><topic>Equilibrium</topic><topic>equilibrium pricing</topic><topic>Game theory</topic><topic>Games</topic><topic>Lower bounds</topic><topic>Markets</topic><topic>McKean–Vlasov</topic><topic>mean‐field games</topic><topic>Noncompliance</topic><topic>Optimization</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Simulation</topic><topic>Solar energy</topic><topic>SREC</topic><topic>Trading</topic><topic>Uncertainty</topic><topic>Uniqueness</topic><topic>variational analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrivats, Arvind V.</creatorcontrib><creatorcontrib>Firoozi, Dena</creatorcontrib><creatorcontrib>Jaimungal, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrivats, Arvind V.</au><au>Firoozi, Dena</au><au>Jaimungal, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets</atitle><jtitle>Mathematical finance</jtitle><date>2022-07</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>779</spage><epage>824</epage><pages>779-824</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>Solar renewable energy certificate (SREC) markets are a market‐based system that incentivizes solar energy generation. A regulatory body overseeing load serving entities imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean‐field game (MFG) limit with subpopulations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, nonlinear noncompliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms' optimal controls as the solution of McKean–Vlasov (MV) forward‐backward stochastic differential equations (FBSDEs) and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV‐FBSDE, and prove that the MFG strategies form an ε$\epsilon$‐Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV‐FBSDEs and conduct a simulation study.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/mafi.12345</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0001-9639-3889</orcidid><orcidid>https://orcid.org/0000-0002-0433-6404</orcidid><orcidid>https://orcid.org/0000-0002-0193-0993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2022-07, Vol.32 (3), p.779-824
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_journals_2678193001
source International Bibliography of the Social Sciences (IBSS); Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); EconLit with Full Text; Business Source Ultimate (EBSCOHost)
subjects Alternative energy sources
cap and trade
commodity markets
Differential equations
Equilibrium
equilibrium pricing
Game theory
Games
Lower bounds
Markets
McKean–Vlasov
mean‐field games
Noncompliance
Optimization
Renewable energy
Renewable resources
Simulation
Solar energy
SREC
Trading
Uncertainty
Uniqueness
variational analysis
title A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mean%E2%80%90field%20game%20approach%20to%20equilibrium%20pricing%20in%20solar%20renewable%20energy%20certificate%20markets&rft.jtitle=Mathematical%20finance&rft.au=Shrivats,%20Arvind%20V.&rft.date=2022-07&rft.volume=32&rft.issue=3&rft.spage=779&rft.epage=824&rft.pages=779-824&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/mafi.12345&rft_dat=%3Cproquest_cross%3E2678193001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3915-89eeee1533bf9105bdabc1c3a0cf76249e8042e5c45b4ef8c0bdbd5d7d4c9ec03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678193001&rft_id=info:pmid/&rfr_iscdi=true