Loading…
Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data
This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ) that if q > m + 2 n , then the system has a global weak solution under smallness conditions for initial data, where m de...
Saved in:
Published in: | Acta applicandae mathematicae 2022-08, Vol.180 (1), Article 3 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Acta applicandae mathematicae |
container_volume | 180 |
creator | Ogawa, Tsukasa Yokota, Tomomi |
description | This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
) that if
q
>
m
+
2
n
, then the system has a global weak solution under smallness conditions for initial data, where
m
describes the intensity of diffusion,
q
shows the nonlinearity, and
n
denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp.,
2019
) when
q
=
2
. The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case
m
+
2
n
<
q
<
m
+
4
n
+
2
and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
). |
doi_str_mv | 10.1007/s10440-022-00504-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678987188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678987188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3</originalsourceid><addsrcrecordid>eNp9kM9qGzEQh0VoIM6fF8hJkPM2I-1auzomtpuGBkrj-CxkaWTWyFpX2oXsre_QPmGepIpdyK2nYYbv9w38CLlm8JkB1LeJQVVBAZwXAFOoivGETNi05oWEUnwiE2CiLhpg8oycp7QFgFIKMSF_Hny31p4uXtvUYzBIdbD0vhuCRRswJdoGquly2GM0se1bk-Efg06tbwPqSOe4wYBR90i_ofcY3379Xuabp8sxG3d0lU2RPqPXr2jpcqe9P3hnXbDZ14VEXRfpY8hLds91ry_JqdM-4dW_eUFWXxYvs6_F0_eHx9ndU2FYw8aCO8a0dcIBWiONq90UJDPOCRCuElxUaAVYvWZuXTrJpDVl2Uhe2qrhtcPygtwcvfvY_Rww9WrbDTHkl4qLupFNzZomU_xImdilFNGpfWx3Oo6KgXpvXx3bV7l9dWhfjTlUHkMpw2GD8UP9n9RfPPqMZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678987188</pqid></control><display><type>article</type><title>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ogawa, Tsukasa ; Yokota, Tomomi</creator><creatorcontrib>Ogawa, Tsukasa ; Yokota, Tomomi</creatorcontrib><description>This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
) that if
q
>
m
+
2
n
, then the system has a global weak solution under smallness conditions for initial data, where
m
describes the intensity of diffusion,
q
shows the nonlinearity, and
n
denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp.,
2019
) when
q
=
2
. The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case
m
+
2
n
<
q
<
m
+
4
n
+
2
and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
).</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-022-00504-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes</subject><ispartof>Acta applicandae mathematicae, 2022-08, Vol.180 (1), Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3</cites><orcidid>0000-0003-1991-418X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2678987188/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2678987188?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Ogawa, Tsukasa</creatorcontrib><creatorcontrib>Yokota, Tomomi</creatorcontrib><title>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
) that if
q
>
m
+
2
n
, then the system has a global weak solution under smallness conditions for initial data, where
m
describes the intensity of diffusion,
q
shows the nonlinearity, and
n
denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp.,
2019
) when
q
=
2
. The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case
m
+
2
n
<
q
<
m
+
4
n
+
2
and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
).</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kM9qGzEQh0VoIM6fF8hJkPM2I-1auzomtpuGBkrj-CxkaWTWyFpX2oXsre_QPmGepIpdyK2nYYbv9w38CLlm8JkB1LeJQVVBAZwXAFOoivGETNi05oWEUnwiE2CiLhpg8oycp7QFgFIKMSF_Hny31p4uXtvUYzBIdbD0vhuCRRswJdoGquly2GM0se1bk-Efg06tbwPqSOe4wYBR90i_ofcY3379Xuabp8sxG3d0lU2RPqPXr2jpcqe9P3hnXbDZ14VEXRfpY8hLds91ry_JqdM-4dW_eUFWXxYvs6_F0_eHx9ndU2FYw8aCO8a0dcIBWiONq90UJDPOCRCuElxUaAVYvWZuXTrJpDVl2Uhe2qrhtcPygtwcvfvY_Rww9WrbDTHkl4qLupFNzZomU_xImdilFNGpfWx3Oo6KgXpvXx3bV7l9dWhfjTlUHkMpw2GD8UP9n9RfPPqMZA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ogawa, Tsukasa</creator><creator>Yokota, Tomomi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1991-418X</orcidid></search><sort><creationdate>20220801</creationdate><title>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</title><author>Ogawa, Tsukasa ; Yokota, Tomomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogawa, Tsukasa</creatorcontrib><creatorcontrib>Yokota, Tomomi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogawa, Tsukasa</au><au>Yokota, Tomomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>180</volume><issue>1</issue><artnum>3</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
) that if
q
>
m
+
2
n
, then the system has a global weak solution under smallness conditions for initial data, where
m
describes the intensity of diffusion,
q
shows the nonlinearity, and
n
denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp.,
2019
) when
q
=
2
. The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case
m
+
2
n
<
q
<
m
+
4
n
+
2
and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491,
2012
).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-022-00504-y</doi><orcidid>https://orcid.org/0000-0003-1991-418X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2022-08, Vol.180 (1), Article 3 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_journals_2678987188 |
source | ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Mathematics Mathematics and Statistics Partial Differential Equations Probability Theory and Stochastic Processes |
title | Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Existence%20and%20Boundedness%20in%20a%20Supercritical%20Quasilinear%20Degenerate%20Keller%E2%80%93Segel%20System%20Under%20Relaxed%20Smallness%20Conditions%20for%20Initial%20Data&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Ogawa,%20Tsukasa&rft.date=2022-08-01&rft.volume=180&rft.issue=1&rft.artnum=3&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-022-00504-y&rft_dat=%3Cproquest_cross%3E2678987188%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678987188&rft_id=info:pmid/&rfr_iscdi=true |