Loading…

Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data

This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ) that if q > m + 2 n , then the system has a global weak solution under smallness conditions for initial data, where m de...

Full description

Saved in:
Bibliographic Details
Published in:Acta applicandae mathematicae 2022-08, Vol.180 (1), Article 3
Main Authors: Ogawa, Tsukasa, Yokota, Tomomi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3
container_end_page
container_issue 1
container_start_page
container_title Acta applicandae mathematicae
container_volume 180
creator Ogawa, Tsukasa
Yokota, Tomomi
description This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ) that if q > m + 2 n , then the system has a global weak solution under smallness conditions for initial data, where m describes the intensity of diffusion, q shows the nonlinearity, and n denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp., 2019 ) when q = 2 . The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case m + 2 n < q < m + 4 n + 2 and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ).
doi_str_mv 10.1007/s10440-022-00504-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678987188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678987188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3</originalsourceid><addsrcrecordid>eNp9kM9qGzEQh0VoIM6fF8hJkPM2I-1auzomtpuGBkrj-CxkaWTWyFpX2oXsre_QPmGepIpdyK2nYYbv9w38CLlm8JkB1LeJQVVBAZwXAFOoivGETNi05oWEUnwiE2CiLhpg8oycp7QFgFIKMSF_Hny31p4uXtvUYzBIdbD0vhuCRRswJdoGquly2GM0se1bk-Efg06tbwPqSOe4wYBR90i_ofcY3379Xuabp8sxG3d0lU2RPqPXr2jpcqe9P3hnXbDZ14VEXRfpY8hLds91ry_JqdM-4dW_eUFWXxYvs6_F0_eHx9ndU2FYw8aCO8a0dcIBWiONq90UJDPOCRCuElxUaAVYvWZuXTrJpDVl2Uhe2qrhtcPygtwcvfvY_Rww9WrbDTHkl4qLupFNzZomU_xImdilFNGpfWx3Oo6KgXpvXx3bV7l9dWhfjTlUHkMpw2GD8UP9n9RfPPqMZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678987188</pqid></control><display><type>article</type><title>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Ogawa, Tsukasa ; Yokota, Tomomi</creator><creatorcontrib>Ogawa, Tsukasa ; Yokota, Tomomi</creatorcontrib><description>This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ) that if q &gt; m + 2 n , then the system has a global weak solution under smallness conditions for initial data, where m describes the intensity of diffusion, q shows the nonlinearity, and n denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp., 2019 ) when q = 2 . The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case m + 2 n &lt; q &lt; m + 4 n + 2 and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ).</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-022-00504-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes</subject><ispartof>Acta applicandae mathematicae, 2022-08, Vol.180 (1), Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3</cites><orcidid>0000-0003-1991-418X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2678987188/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2678987188?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Ogawa, Tsukasa</creatorcontrib><creatorcontrib>Yokota, Tomomi</creatorcontrib><title>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ) that if q &gt; m + 2 n , then the system has a global weak solution under smallness conditions for initial data, where m describes the intensity of diffusion, q shows the nonlinearity, and n denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp., 2019 ) when q = 2 . The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case m + 2 n &lt; q &lt; m + 4 n + 2 and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ).</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kM9qGzEQh0VoIM6fF8hJkPM2I-1auzomtpuGBkrj-CxkaWTWyFpX2oXsre_QPmGepIpdyK2nYYbv9w38CLlm8JkB1LeJQVVBAZwXAFOoivGETNi05oWEUnwiE2CiLhpg8oycp7QFgFIKMSF_Hny31p4uXtvUYzBIdbD0vhuCRRswJdoGquly2GM0se1bk-Efg06tbwPqSOe4wYBR90i_ofcY3379Xuabp8sxG3d0lU2RPqPXr2jpcqe9P3hnXbDZ14VEXRfpY8hLds91ry_JqdM-4dW_eUFWXxYvs6_F0_eHx9ndU2FYw8aCO8a0dcIBWiONq90UJDPOCRCuElxUaAVYvWZuXTrJpDVl2Uhe2qrhtcPygtwcvfvY_Rww9WrbDTHkl4qLupFNzZomU_xImdilFNGpfWx3Oo6KgXpvXx3bV7l9dWhfjTlUHkMpw2GD8UP9n9RfPPqMZA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ogawa, Tsukasa</creator><creator>Yokota, Tomomi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1991-418X</orcidid></search><sort><creationdate>20220801</creationdate><title>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</title><author>Ogawa, Tsukasa ; Yokota, Tomomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogawa, Tsukasa</creatorcontrib><creatorcontrib>Yokota, Tomomi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogawa, Tsukasa</au><au>Yokota, Tomomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>180</volume><issue>1</issue><artnum>3</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>This paper is concerned with a quasilinear degenerate Keller–Segel system of parabolic–parabolic type. It was proved in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ) that if q &gt; m + 2 n , then the system has a global weak solution under smallness conditions for initial data, where m describes the intensity of diffusion, q shows the nonlinearity, and n denotes the dimension. The smallness conditions were relaxed in Wang et al. (Z. Angew. Math. Phys. 70:18 pp., 2019 ) when q = 2 . The purpose of this paper is to obtain global existence and boundedness under more general conditions for initial data in the case m + 2 n &lt; q &lt; m + 4 n + 2 and to relax the conditions assumed in Ishida and Yokota (J. Differ. Equ. 252:2469–2491, 2012 ).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-022-00504-y</doi><orcidid>https://orcid.org/0000-0003-1991-418X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2022-08, Vol.180 (1), Article 3
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_2678987188
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
Probability Theory and Stochastic Processes
title Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller–Segel System Under Relaxed Smallness Conditions for Initial Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Existence%20and%20Boundedness%20in%20a%20Supercritical%20Quasilinear%20Degenerate%20Keller%E2%80%93Segel%20System%20Under%20Relaxed%20Smallness%20Conditions%20for%20Initial%20Data&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Ogawa,%20Tsukasa&rft.date=2022-08-01&rft.volume=180&rft.issue=1&rft.artnum=3&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-022-00504-y&rft_dat=%3Cproquest_cross%3E2678987188%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181y-2f11adf6f0edc9cf7f5091cff606f46264ed60dab1fb3f919dc338923d4827fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678987188&rft_id=info:pmid/&rfr_iscdi=true