Loading…
On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems
The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible...
Saved in:
Published in: | IEEE transactions on control of network systems 2022-06, Vol.9 (2), p.537-549 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323 |
container_end_page | 549 |
container_issue | 2 |
container_start_page | 537 |
container_title | IEEE transactions on control of network systems |
container_volume | 9 |
creator | Bi, Yingjie Lavaei, Javad |
description | The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics. |
doi_str_mv | 10.1109/TCNS.2022.3161203 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2679394629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9739965</ieee_id><sourcerecordid>2679394629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</originalsourceid><addsrcrecordid>eNpNUF1LwzAUDaLgmPsB4kvB5858tEnzKNWpMJzofBNClt5qR9fUJBPmrzd1Q3y691zOB_cgdE7wlBAsr5bl48uUYkqnjHBCMTtCI8ponuaFwMf_9lM08X6NMSY0j5iN0NuiS8IHJKXtOjCh-WrCLnlytgcXGvCJrZMZaN-sWkie4b2x3e9t0Ydmo9vkBgx0wem2-YZqMAnOtoM-8jf-DJ3UuvUwOcwxep3dLsv7dL64eyiv56mhkoW0XglSGZHzQpiaGxxhXmVZoQWBggjOmRaAscAFQBUZ3BhdAJVSZ6LOGGVjdLn37Z393IIPam23rouRinIhmcx4DBojsmcZZ713UKvexSfcThGshh7V0KMaelSHHqPmYq9pAOCPLwWTkufsByJibr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679394629</pqid></control><display><type>article</type><title>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</title><source>IEEE Xplore (Online service)</source><creator>Bi, Yingjie ; Lavaei, Javad</creator><creatorcontrib>Bi, Yingjie ; Lavaei, Javad</creatorcontrib><description>The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2022.3161203</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication ; Communication networks ; Communications networks ; Communications systems ; Connectivity ; Controllers ; Costs ; Criteria ; Decentralized control ; Network systems ; nonconvexity ; Optimal control ; Optimization ; Parameterization ; Search algorithms ; Search methods ; Symmetric matrices ; System dynamics</subject><ispartof>IEEE transactions on control of network systems, 2022-06, Vol.9 (2), p.537-549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</citedby><cites>FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</cites><orcidid>0000-0003-4294-1338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9739965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bi, Yingjie</creatorcontrib><creatorcontrib>Lavaei, Javad</creatorcontrib><title>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.</description><subject>Communication</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Communications systems</subject><subject>Connectivity</subject><subject>Controllers</subject><subject>Costs</subject><subject>Criteria</subject><subject>Decentralized control</subject><subject>Network systems</subject><subject>nonconvexity</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Symmetric matrices</subject><subject>System dynamics</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUF1LwzAUDaLgmPsB4kvB5858tEnzKNWpMJzofBNClt5qR9fUJBPmrzd1Q3y691zOB_cgdE7wlBAsr5bl48uUYkqnjHBCMTtCI8ponuaFwMf_9lM08X6NMSY0j5iN0NuiS8IHJKXtOjCh-WrCLnlytgcXGvCJrZMZaN-sWkie4b2x3e9t0Ydmo9vkBgx0wem2-YZqMAnOtoM-8jf-DJ3UuvUwOcwxep3dLsv7dL64eyiv56mhkoW0XglSGZHzQpiaGxxhXmVZoQWBggjOmRaAscAFQBUZ3BhdAJVSZ6LOGGVjdLn37Z393IIPam23rouRinIhmcx4DBojsmcZZ713UKvexSfcThGshh7V0KMaelSHHqPmYq9pAOCPLwWTkufsByJibr8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bi, Yingjie</creator><creator>Lavaei, Javad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4294-1338</orcidid></search><sort><creationdate>20220601</creationdate><title>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</title><author>Bi, Yingjie ; Lavaei, Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Communications systems</topic><topic>Connectivity</topic><topic>Controllers</topic><topic>Costs</topic><topic>Criteria</topic><topic>Decentralized control</topic><topic>Network systems</topic><topic>nonconvexity</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Symmetric matrices</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yingjie</creatorcontrib><creatorcontrib>Lavaei, Javad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Yingjie</au><au>Lavaei, Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>537</spage><epage>549</epage><pages>537-549</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2022.3161203</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4294-1338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2022-06, Vol.9 (2), p.537-549 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_proquest_journals_2679394629 |
source | IEEE Xplore (Online service) |
subjects | Communication Communication networks Communications networks Communications systems Connectivity Controllers Costs Criteria Decentralized control Network systems nonconvexity Optimal control Optimization Parameterization Search algorithms Search methods Symmetric matrices System dynamics |
title | On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Connectivity%20Properties%20of%20Feasible%20Regions%20of%20Optimal%20Decentralized%20Control%20Problems&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Bi,%20Yingjie&rft.date=2022-06-01&rft.volume=9&rft.issue=2&rft.spage=537&rft.epage=549&rft.pages=537-549&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2022.3161203&rft_dat=%3Cproquest_ieee_%3E2679394629%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679394629&rft_id=info:pmid/&rft_ieee_id=9739965&rfr_iscdi=true |