Loading…

On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems

The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems 2022-06, Vol.9 (2), p.537-549
Main Authors: Bi, Yingjie, Lavaei, Javad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323
cites cdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323
container_end_page 549
container_issue 2
container_start_page 537
container_title IEEE transactions on control of network systems
container_volume 9
creator Bi, Yingjie
Lavaei, Javad
description The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.
doi_str_mv 10.1109/TCNS.2022.3161203
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2679394629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9739965</ieee_id><sourcerecordid>2679394629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</originalsourceid><addsrcrecordid>eNpNUF1LwzAUDaLgmPsB4kvB5858tEnzKNWpMJzofBNClt5qR9fUJBPmrzd1Q3y691zOB_cgdE7wlBAsr5bl48uUYkqnjHBCMTtCI8ponuaFwMf_9lM08X6NMSY0j5iN0NuiS8IHJKXtOjCh-WrCLnlytgcXGvCJrZMZaN-sWkie4b2x3e9t0Ydmo9vkBgx0wem2-YZqMAnOtoM-8jf-DJ3UuvUwOcwxep3dLsv7dL64eyiv56mhkoW0XglSGZHzQpiaGxxhXmVZoQWBggjOmRaAscAFQBUZ3BhdAJVSZ6LOGGVjdLn37Z393IIPam23rouRinIhmcx4DBojsmcZZ713UKvexSfcThGshh7V0KMaelSHHqPmYq9pAOCPLwWTkufsByJibr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679394629</pqid></control><display><type>article</type><title>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</title><source>IEEE Xplore (Online service)</source><creator>Bi, Yingjie ; Lavaei, Javad</creator><creatorcontrib>Bi, Yingjie ; Lavaei, Javad</creatorcontrib><description>The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2022.3161203</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication ; Communication networks ; Communications networks ; Communications systems ; Connectivity ; Controllers ; Costs ; Criteria ; Decentralized control ; Network systems ; nonconvexity ; Optimal control ; Optimization ; Parameterization ; Search algorithms ; Search methods ; Symmetric matrices ; System dynamics</subject><ispartof>IEEE transactions on control of network systems, 2022-06, Vol.9 (2), p.537-549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</citedby><cites>FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</cites><orcidid>0000-0003-4294-1338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9739965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bi, Yingjie</creatorcontrib><creatorcontrib>Lavaei, Javad</creatorcontrib><title>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.</description><subject>Communication</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Communications systems</subject><subject>Connectivity</subject><subject>Controllers</subject><subject>Costs</subject><subject>Criteria</subject><subject>Decentralized control</subject><subject>Network systems</subject><subject>nonconvexity</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Symmetric matrices</subject><subject>System dynamics</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUF1LwzAUDaLgmPsB4kvB5858tEnzKNWpMJzofBNClt5qR9fUJBPmrzd1Q3y691zOB_cgdE7wlBAsr5bl48uUYkqnjHBCMTtCI8ponuaFwMf_9lM08X6NMSY0j5iN0NuiS8IHJKXtOjCh-WrCLnlytgcXGvCJrZMZaN-sWkie4b2x3e9t0Ydmo9vkBgx0wem2-YZqMAnOtoM-8jf-DJ3UuvUwOcwxep3dLsv7dL64eyiv56mhkoW0XglSGZHzQpiaGxxhXmVZoQWBggjOmRaAscAFQBUZ3BhdAJVSZ6LOGGVjdLn37Z393IIPam23rouRinIhmcx4DBojsmcZZ713UKvexSfcThGshh7V0KMaelSHHqPmYq9pAOCPLwWTkufsByJibr8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bi, Yingjie</creator><creator>Lavaei, Javad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4294-1338</orcidid></search><sort><creationdate>20220601</creationdate><title>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</title><author>Bi, Yingjie ; Lavaei, Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Communications systems</topic><topic>Connectivity</topic><topic>Controllers</topic><topic>Costs</topic><topic>Criteria</topic><topic>Decentralized control</topic><topic>Network systems</topic><topic>nonconvexity</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Symmetric matrices</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yingjie</creatorcontrib><creatorcontrib>Lavaei, Javad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Yingjie</au><au>Lavaei, Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>537</spage><epage>549</epage><pages>537-549</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>The optimal decentralized control (ODC) is an NP-hard problem with many applications in real-world systems. There is a recent trend of using local search algorithms for solving optimal control problems. However, the effectiveness of these methods depends on the connectivity property of the feasible region of the underlying optimization problem. In this article, for ODC problems with static controllers, we develop a novel criterion for certifying the connectivity of the feasible region in the case where the input and output matrices of the system dynamics are identity matrices. This criterion can be checked via an efficient algorithm, and it is used to prove that the number of communication networks leading to connected feasible regions is greater than a square root of the exponential number of possible communication networks (named patterns). For ODC problems with dynamic controllers, we prove that under certain mild conditions, the closure of the feasible region is always connected after some parameterization, for general communication networks and system dynamics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2022.3161203</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4294-1338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2022-06, Vol.9 (2), p.537-549
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_proquest_journals_2679394629
source IEEE Xplore (Online service)
subjects Communication
Communication networks
Communications networks
Communications systems
Connectivity
Controllers
Costs
Criteria
Decentralized control
Network systems
nonconvexity
Optimal control
Optimization
Parameterization
Search algorithms
Search methods
Symmetric matrices
System dynamics
title On the Connectivity Properties of Feasible Regions of Optimal Decentralized Control Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Connectivity%20Properties%20of%20Feasible%20Regions%20of%20Optimal%20Decentralized%20Control%20Problems&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Bi,%20Yingjie&rft.date=2022-06-01&rft.volume=9&rft.issue=2&rft.spage=537&rft.epage=549&rft.pages=537-549&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2022.3161203&rft_dat=%3Cproquest_ieee_%3E2679394629%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-fb71dc75687cf6c0b715d448a71e817663a7e00708eedcf66cca8e299a47f4323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679394629&rft_id=info:pmid/&rft_ieee_id=9739965&rfr_iscdi=true