Loading…
The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM
Ice sheet processes are often simplified in global climate models as changes in ice sheets have been assumed to occur over long time scales compared to ocean and atmospheric changes. However, numerous observations show an increasing rate of mass loss from the Greenland Ice Sheet and call for compreh...
Saved in:
Published in: | Climate dynamics 2022-08, Vol.59 (3-4), p.1189-1211 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673 |
---|---|
cites | cdi_FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673 |
container_end_page | 1211 |
container_issue | 3-4 |
container_start_page | 1189 |
container_title | Climate dynamics |
container_volume | 59 |
creator | Madsen, M. S. Yang, S. Aðalgeirsdóttir, G. Svendsen, S. H. Rodehacke, C. B. Ringgaard, I. M. |
description | Ice sheet processes are often simplified in global climate models as changes in ice sheets have been assumed to occur over long time scales compared to ocean and atmospheric changes. However, numerous observations show an increasing rate of mass loss from the Greenland Ice Sheet and call for comprehensive process-based models to explore its role in climate change. Here, we present a new model system, EC-Earth-PISM, that includes an interactive Greenland Ice Sheet. The model is based on the EC-Earth v2.3 global climate model in which ice sheet surface processes are introduced. This model interacts with the Parallel Ice Sheet Model (PISM) without anomaly or flux corrections. Under pre-industrial climate conditions, the modeled climate and ice sheet are stable while keeping a realistic interannual variability. In model simulations forced into a warmer climate of four times the pre-industrial CO
2
concentration, the total surface mass balance decreases and the ice sheet loses mass at a rate of about 500 Gt/year. In the climate warming experiments, the resulting freshwater flux from the Greenland Ice Sheet increases 55% more in the experiments with the interactive ice sheet and the climate response is significantly different: the Arctic near-surface air temperature is lower, substantially more winter sea ice covers the northern hemisphere, and the ocean circulation is weaker. Our results indicate that the melt-albedo feedback plays a key role for the response of the ice sheet and its influence on the changing climate in the Arctic. This emphasizes the importance of including interactive ice sheets in climate change projections. |
doi_str_mv | 10.1007/s00382-022-06184-6 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2679454267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708056234</galeid><sourcerecordid>A708056234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673</originalsourceid><addsrcrecordid>eNp9kV1rHCEUhqW00G3aP9AroVDohakfM-pchmWbLqQk5ONaXOe4M8Edt-qU9t_XZgrp3hQRUZ9HPb4IvWf0nFGqPmdKheaE8tol0w2RL9CKNaJOdde8RCvaCUpUq9rX6E3Oj5SyRiq-Qu5-AJxiABw9thMepwLJujL-AHyZAKZgpx6PDnAeAErdx6UaLs7HAD12YTzYAuQZOMQeAt6sycamMpCb7d23t-iVtyHDu7_jGXr4srlffyVX15fb9cUVcfUthTi3873l2mkmeqlbx5ykXPDdbie9klQwrVTXMa2tbL2XjQTBpZK972v1Uokz9GE595ji9xlyMY9xTlO90lSua9qGP1HnC7W3Acw4-VhqwbX1cBhdnMCPdf1CUU1byUVThU8nQmUK_Cx7O-dstne3p-zHf9gBbChDjmEuY5zyKcgX0KWYcwJvjql-ZfplGDV_IjVLpKZGap4iNbJKYpFyhac9pOcC_2P9Bk-QoAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679454267</pqid></control><display><type>article</type><title>The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM</title><source>Springer Nature</source><creator>Madsen, M. S. ; Yang, S. ; Aðalgeirsdóttir, G. ; Svendsen, S. H. ; Rodehacke, C. B. ; Ringgaard, I. M.</creator><creatorcontrib>Madsen, M. S. ; Yang, S. ; Aðalgeirsdóttir, G. ; Svendsen, S. H. ; Rodehacke, C. B. ; Ringgaard, I. M.</creatorcontrib><description>Ice sheet processes are often simplified in global climate models as changes in ice sheets have been assumed to occur over long time scales compared to ocean and atmospheric changes. However, numerous observations show an increasing rate of mass loss from the Greenland Ice Sheet and call for comprehensive process-based models to explore its role in climate change. Here, we present a new model system, EC-Earth-PISM, that includes an interactive Greenland Ice Sheet. The model is based on the EC-Earth v2.3 global climate model in which ice sheet surface processes are introduced. This model interacts with the Parallel Ice Sheet Model (PISM) without anomaly or flux corrections. Under pre-industrial climate conditions, the modeled climate and ice sheet are stable while keeping a realistic interannual variability. In model simulations forced into a warmer climate of four times the pre-industrial CO
2
concentration, the total surface mass balance decreases and the ice sheet loses mass at a rate of about 500 Gt/year. In the climate warming experiments, the resulting freshwater flux from the Greenland Ice Sheet increases 55% more in the experiments with the interactive ice sheet and the climate response is significantly different: the Arctic near-surface air temperature is lower, substantially more winter sea ice covers the northern hemisphere, and the ocean circulation is weaker. Our results indicate that the melt-albedo feedback plays a key role for the response of the ice sheet and its influence on the changing climate in the Arctic. This emphasizes the importance of including interactive ice sheets in climate change projections.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-022-06184-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air temperature ; Albedo ; Analysis ; Arctic climates ; Atmospheric models ; Carbon dioxide ; Carbon dioxide concentration ; Climate ; Climate change ; Climate models ; Climatic conditions ; Climatology ; Corrections ; Earth ; Earth and Environmental Science ; Earth Sciences ; Freshwater ; Geophysics/Geodesy ; Glaciation ; Global climate ; Global climate models ; Global warming ; Greenland ice sheet ; Ice sheet models ; Ice sheets ; Influence ; Inland water environment ; Interannual variability ; Mass ; Mass balance ; Modelling ; Northern Hemisphere ; Observations ; Ocean circulation ; Ocean currents ; Oceanography ; Oceans ; Sea ice ; Sheet modelling ; Surface temperature ; Surface-air temperature relationships ; Surface-ice melting ; Water circulation</subject><ispartof>Climate dynamics, 2022-08, Vol.59 (3-4), p.1189-1211</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673</citedby><cites>FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673</cites><orcidid>0000-0003-1980-372X ; 0000-0003-3153-5537 ; 0000-0002-3442-2733 ; 0000-0002-0147-2056 ; 0000-0003-3110-3857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Madsen, M. S.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Aðalgeirsdóttir, G.</creatorcontrib><creatorcontrib>Svendsen, S. H.</creatorcontrib><creatorcontrib>Rodehacke, C. B.</creatorcontrib><creatorcontrib>Ringgaard, I. M.</creatorcontrib><title>The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Ice sheet processes are often simplified in global climate models as changes in ice sheets have been assumed to occur over long time scales compared to ocean and atmospheric changes. However, numerous observations show an increasing rate of mass loss from the Greenland Ice Sheet and call for comprehensive process-based models to explore its role in climate change. Here, we present a new model system, EC-Earth-PISM, that includes an interactive Greenland Ice Sheet. The model is based on the EC-Earth v2.3 global climate model in which ice sheet surface processes are introduced. This model interacts with the Parallel Ice Sheet Model (PISM) without anomaly or flux corrections. Under pre-industrial climate conditions, the modeled climate and ice sheet are stable while keeping a realistic interannual variability. In model simulations forced into a warmer climate of four times the pre-industrial CO
2
concentration, the total surface mass balance decreases and the ice sheet loses mass at a rate of about 500 Gt/year. In the climate warming experiments, the resulting freshwater flux from the Greenland Ice Sheet increases 55% more in the experiments with the interactive ice sheet and the climate response is significantly different: the Arctic near-surface air temperature is lower, substantially more winter sea ice covers the northern hemisphere, and the ocean circulation is weaker. Our results indicate that the melt-albedo feedback plays a key role for the response of the ice sheet and its influence on the changing climate in the Arctic. This emphasizes the importance of including interactive ice sheets in climate change projections.</description><subject>Air temperature</subject><subject>Albedo</subject><subject>Analysis</subject><subject>Arctic climates</subject><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>Climatology</subject><subject>Corrections</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Freshwater</subject><subject>Geophysics/Geodesy</subject><subject>Glaciation</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Greenland ice sheet</subject><subject>Ice sheet models</subject><subject>Ice sheets</subject><subject>Influence</subject><subject>Inland water environment</subject><subject>Interannual variability</subject><subject>Mass</subject><subject>Mass balance</subject><subject>Modelling</subject><subject>Northern Hemisphere</subject><subject>Observations</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Sea ice</subject><subject>Sheet modelling</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Surface-ice melting</subject><subject>Water circulation</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rHCEUhqW00G3aP9AroVDohakfM-pchmWbLqQk5ONaXOe4M8Edt-qU9t_XZgrp3hQRUZ9HPb4IvWf0nFGqPmdKheaE8tol0w2RL9CKNaJOdde8RCvaCUpUq9rX6E3Oj5SyRiq-Qu5-AJxiABw9thMepwLJujL-AHyZAKZgpx6PDnAeAErdx6UaLs7HAD12YTzYAuQZOMQeAt6sycamMpCb7d23t-iVtyHDu7_jGXr4srlffyVX15fb9cUVcfUthTi3873l2mkmeqlbx5ykXPDdbie9klQwrVTXMa2tbL2XjQTBpZK972v1Uokz9GE595ji9xlyMY9xTlO90lSua9qGP1HnC7W3Acw4-VhqwbX1cBhdnMCPdf1CUU1byUVThU8nQmUK_Cx7O-dstne3p-zHf9gBbChDjmEuY5zyKcgX0KWYcwJvjql-ZfplGDV_IjVLpKZGap4iNbJKYpFyhac9pOcC_2P9Bk-QoAQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Madsen, M. S.</creator><creator>Yang, S.</creator><creator>Aðalgeirsdóttir, G.</creator><creator>Svendsen, S. H.</creator><creator>Rodehacke, C. B.</creator><creator>Ringgaard, I. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1980-372X</orcidid><orcidid>https://orcid.org/0000-0003-3153-5537</orcidid><orcidid>https://orcid.org/0000-0002-3442-2733</orcidid><orcidid>https://orcid.org/0000-0002-0147-2056</orcidid><orcidid>https://orcid.org/0000-0003-3110-3857</orcidid></search><sort><creationdate>20220801</creationdate><title>The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM</title><author>Madsen, M. S. ; Yang, S. ; Aðalgeirsdóttir, G. ; Svendsen, S. H. ; Rodehacke, C. B. ; Ringgaard, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Albedo</topic><topic>Analysis</topic><topic>Arctic climates</topic><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>Climatology</topic><topic>Corrections</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Freshwater</topic><topic>Geophysics/Geodesy</topic><topic>Glaciation</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Greenland ice sheet</topic><topic>Ice sheet models</topic><topic>Ice sheets</topic><topic>Influence</topic><topic>Inland water environment</topic><topic>Interannual variability</topic><topic>Mass</topic><topic>Mass balance</topic><topic>Modelling</topic><topic>Northern Hemisphere</topic><topic>Observations</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Sea ice</topic><topic>Sheet modelling</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Surface-ice melting</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madsen, M. S.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Aðalgeirsdóttir, G.</creatorcontrib><creatorcontrib>Svendsen, S. H.</creatorcontrib><creatorcontrib>Rodehacke, C. B.</creatorcontrib><creatorcontrib>Ringgaard, I. M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madsen, M. S.</au><au>Yang, S.</au><au>Aðalgeirsdóttir, G.</au><au>Svendsen, S. H.</au><au>Rodehacke, C. B.</au><au>Ringgaard, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>59</volume><issue>3-4</issue><spage>1189</spage><epage>1211</epage><pages>1189-1211</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Ice sheet processes are often simplified in global climate models as changes in ice sheets have been assumed to occur over long time scales compared to ocean and atmospheric changes. However, numerous observations show an increasing rate of mass loss from the Greenland Ice Sheet and call for comprehensive process-based models to explore its role in climate change. Here, we present a new model system, EC-Earth-PISM, that includes an interactive Greenland Ice Sheet. The model is based on the EC-Earth v2.3 global climate model in which ice sheet surface processes are introduced. This model interacts with the Parallel Ice Sheet Model (PISM) without anomaly or flux corrections. Under pre-industrial climate conditions, the modeled climate and ice sheet are stable while keeping a realistic interannual variability. In model simulations forced into a warmer climate of four times the pre-industrial CO
2
concentration, the total surface mass balance decreases and the ice sheet loses mass at a rate of about 500 Gt/year. In the climate warming experiments, the resulting freshwater flux from the Greenland Ice Sheet increases 55% more in the experiments with the interactive ice sheet and the climate response is significantly different: the Arctic near-surface air temperature is lower, substantially more winter sea ice covers the northern hemisphere, and the ocean circulation is weaker. Our results indicate that the melt-albedo feedback plays a key role for the response of the ice sheet and its influence on the changing climate in the Arctic. This emphasizes the importance of including interactive ice sheets in climate change projections.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-022-06184-6</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-1980-372X</orcidid><orcidid>https://orcid.org/0000-0003-3153-5537</orcidid><orcidid>https://orcid.org/0000-0002-3442-2733</orcidid><orcidid>https://orcid.org/0000-0002-0147-2056</orcidid><orcidid>https://orcid.org/0000-0003-3110-3857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2022-08, Vol.59 (3-4), p.1189-1211 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2679454267 |
source | Springer Nature |
subjects | Air temperature Albedo Analysis Arctic climates Atmospheric models Carbon dioxide Carbon dioxide concentration Climate Climate change Climate models Climatic conditions Climatology Corrections Earth Earth and Environmental Science Earth Sciences Freshwater Geophysics/Geodesy Glaciation Global climate Global climate models Global warming Greenland ice sheet Ice sheet models Ice sheets Influence Inland water environment Interannual variability Mass Mass balance Modelling Northern Hemisphere Observations Ocean circulation Ocean currents Oceanography Oceans Sea ice Sheet modelling Surface temperature Surface-air temperature relationships Surface-ice melting Water circulation |
title | The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20an%20interactive%20Greenland%20ice%20sheet%20in%20the%20coupled%20climate-ice%20sheet%20model%20EC-Earth-PISM&rft.jtitle=Climate%20dynamics&rft.au=Madsen,%20M.%20S.&rft.date=2022-08-01&rft.volume=59&rft.issue=3-4&rft.spage=1189&rft.epage=1211&rft.pages=1189-1211&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-022-06184-6&rft_dat=%3Cgale_proqu%3EA708056234%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-ccbfda28c813d685c1c60232bbb6f7603187799188a65ff646e32676dfd003673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679454267&rft_id=info:pmid/&rft_galeid=A708056234&rfr_iscdi=true |